Prepared for Tillamook County

EPA Brownfields Assessment Grant

February 2017

Prepared by Parametrix

Prepared for

Tillamook County 801 Ivy Avenue, Suite B Tillamook, Oregon 97141

EPA Brownfields Assessment Grant Salmonberry Trail Cooperative Agreement BF-00J94201-0

Prepared by

Parametrix 700 NE Multnomah, Suite 1000 Portland, OR 97232-4110 T. 503.233.2400 T. 360.694.5020 F. 1.855.542.6353 www.parametrix.com

February 16, 2017 | 273-2925-007-03-06

CITATION

Parametrix. 2017. Phase II Environmental Site Assessment Botts Marsh Upland Tax Lots 300, 400, 4600, 4700, 4800 Wheeler, Oregon. Prepared by Parametrix, Portland, OR. February 16, 2017.

CERTIFICATION

The technical material and data contained in this document were prepared under the supervision and direction of the undersigned, whose seal, as a professional engineer licensed to practice as such, is affixed below.

Prepared by Adam Romey, R.G.

5 Way

Approved by Rick Wadsworth, P.E.

TABLE OF CONTENTS

EXECUT		UMMARY ES	-1							
1.	INTR	ODUCTION	.1							
	1.1	Site Location	.1							
	1.2	Site and Vicinity Characteristics	.2							
	1.3	Site History	.2							
	1.4	Physical Setting	.2							
2.	PREV	EVIOUS INVESTIGATIONS								
	2.1	September 2016 Phase I ESA	.3							
3.	PHAS	SE II INVESTIGATION	.4							
	3.1	Methods	.4							
		3.1.1 Soil Borings	.4							
		3.1.2 Groundwater	.5							
	3.2	Subsurface Soil Characteristics	.6							
	3.3	Analytical Results and Extent of Contamination	.6							
		3.3.1 Northern Section	.6							
		3.3.2 Central Section	.7							
		3.3.3 Southern Section	.0							
4.	LAND	OUSE DETERMINATION	.9							
	4.1	Locality	10							
	4.2	Land Use in Locality	10							
5.	GRO	UNDWATER BENEFICIAL USE DETERMINATION	10							
	5.1	Water Rights	10							
	5.2	Drinking Water Use	10							
	5.3	Irrigation								
	5.4	Industrial and Engineering								
	5.5	Surface Water Recharge	11							
	5.6	Beneficial Use Determination Conclusions	11							
6.	RISK	EVALUATION	11							
	6.1	Exposure Path Summary	11							
		6.1.1 Conceptual Site Model	12							
		6.1.2 Release/Source Analysis	12							
		6.1.3 Exposure Pathways, Exposure Points, and Receptors	12							

TABLE OF CONTENTS (CONTINUED)

6.2	Risk C		
	6.2.1	Soil	
	6.2.2	Groundwater	14
	6.2.3	Ecological Risk	
CON	CLUSIO	NS	16
RECO	MMEN	IDATIONS	
DEFEI			10

TABLES

7.

8.

9.

- 1 Summary of Soil TPH and Metals Analytical Results
- 2 Summary of Soil PAH and VOC Analytical Results
- 3 Summary of Soil Dioxins/Furans Analytical Results
- 4 Summary of Groundwater TPH and Metals Analytical Results
- 5 Summary of Groundwater PAH and VOC Analytical Results

FIGURES

- 1 Vicinity Map
- 2 Sample Locations
- 3 Soil Sample Locations and Results
- 4 Groundwater Sample Locations and Results
- 5 Conceptual Site Model

APPENDICES

- A Boring Logs
- B Laboratory Analytical Reports and Data Validation

EXECUTIVE SUMMARY

On behalf of Tillamook County, Parametrix conducted a Phase II Environmental Site Assessment (ESA) on the Botts Marsh Upland property located in Wheeler, Oregon (Figure 1) as part of the Salmonberry Trail Brownfields Assessment Program. Based on the findings of this investigation, Parametrix reached the following conclusions:

- A Phase I ESA on the subject property was conducted in September 2016. The Phase I ESA identified former structures and features associated with the Wheeler Lumber Company which operated at the site from at least the 1920s through the 1950s or 1960s. Based on historical aerial photographs, the site has been vacant since at least 1970. Current use includes storage of miscellaneous equipment and vehicles on the southern portion of the property and temporary/periodic use of the central and northern portion of the property by the public for access to the adjacent Nehalem River. The Phase I ESA was conducted as part of Tillamook County's Salmonberry Trail Brownfields Assessment Grant. A Phase II ESA was recommended to determine if the past operations have impacted the subsurface the property and to establish baseline environmental conditions in support of potential redevelopment of the property.
- 2. Parametrix supervised the drilling of twenty exploratory borings (labelled BM-B-1 to BM-B-20) to a depth of 10 to 15 feet bgs on the subject property. A total of 31 soil samples were analyzed by the laboratory for one or more target compounds, including diesel-range petroleum hydrocarbons (TPH-Dx), PAHs, VOCs, RCRA 8 metals, and/or dioxins/furans. Six of the 20 borings included groundwater samples. The investigation focused on determining whether the past use of the property had impacted subsurface conditions. For the purposes of evaluation, the property was divided into three portions; the northern portion, the central portion, and the southern portion.
- 3. Six borings were completed in the northern portion of the site, which was the location of the former log deck and two former mill buildings. A very low concentration of diesel-range petroleum hydrocarbons was detected in one sample (lube oil in sample BM-B-1-5.0 at 73.8 mg/kg). No other significant concentrations of target compounds were detected in soil in the northern portion of the property. It does not appear that former operations or current use have impacted the soil subsurface in any significant manner.
- 4. Seven borings were completed in the central portion of the site, which was the location of a former machine shop and burn pit. Moderate concentrations of diesel-range petroleum hydrocarbons were detected in several of the borings, at a maximum concentration of 783 mg/kg (sample BM-B-11-1.0-D). In addition, near-surface soil samples (1 foot) from borings BM-B-11 and BM-B-12, near the former machine shop, had detections of several PAHs above the most stringent DEQ RBCs (residential). No other significant concentrations of target compounds were detected in soil in the central portion of the property. Based on the borings completed, there appears to be some soil contamination of petroleum hydrocarbons and associated compounds in the central portion of the site, primarily near the former machine shop. In general, the concentrations of COPCs detected are low and likely limited in extent. Widespread contamination was not observed through sampling or other field indications. However, it does appear that elevated concentrations of PAHs may be present within near-surface soils near boring BM-B-11, but it is not expected that PAH contamination is significant in extent laterally or vertically (based on other borings and field indications). In the event of future development, management of soils in the area near boring BM-B-11 may be necessary.

- 5. Seven borings were completed in the southern portion of the site, which is the location of a concrete slab and former mill buildings. In general, soil contamination appears to be limited in the southern section of the site. It does not appear that former operations or current use have impacted the soil subsurface in any significant manner.
- 6. Impacts to groundwater quality at the site appear to be limited to low levels of diesel-range petroleum hydrocarbons in the northern and central portions of the site, and detections of PAHs in one boring (BM-B-5) in the central portion of the property. Low levels of RCRA 8 metals were detected in all 6 borings, but none at significant concentrations. The source of groundwater impacts are not known, but may be related to former operations. In any event, residual groundwater contamination appears to be relatively low, considering the lack of shallow groundwater use as a drinking water source.
- 7. Current and former land use of the subject property has been industrial in nature. As development plans for the Botts Marsh Upland site are unknown at this time, all potential land use scenarios were evaluated including commercial (occupational) and residential. These were used in the development of a conceptual site model and exposure pathways as described in the risk evaluation.
- 8. Based on an evaluation of groundwater beneficial use, there is no current or potential beneficial use of shallow groundwater for drinking water at the site. For this reason, drinking water exposure was not evaluated as part of the risk assessment. However, a beneficial use of shallow groundwater is surface water recharge to the adjacent Nehalem River. Therefore, potential ecological impacts to the Nehalem River were evaluated as part of the risk assessment.
- 9. Based on the risk assessment, several PAHs [benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene] exceeded the DEQ RBC for residential exposure in one soil sample in the vicinity of the former machine shop (boring BM-B-11). Benzo(a)pyrene also slightly exceeded the DEQ RBC for occupational exposure to soil. It is not expected that PAH contamination in soil is significant in extent laterally or vertically (based on other borings and field indications). However, if residential or commercial development occurs in the future at the site in the vicinity of the former machine shop, these results should be considered for potential mitigation of near-surface soils to limit potential risk.
- 10. No COPCs exceeded the applicable DEQ RBCs for residential or occupational exposure to groundwater.
- 11. No COPCs exceeded the applicable DEQ RBCs for construction worker or excavation worker exposure to soil or groundwater.
- 12. No COPCs in soil samples exceeded the EPA ecological soil screening levels for invertebrates, birds, or mammals. No COPCs in groundwater exceeded the DEQ screening levels for birds and mammals associated with surface water or sediment exposure.
- 13. Five groundwater samples had concentrations of at least one RCRA 8 metal (barium, lead, and/or silver) above the DEQ screening level value for aquatic life. However, the concentrations of metals detected do not appear to be significantly elevated above expected naturally occurring conditions and a specific source of elevated metals was not observed in overlying soil. One groundwater sample (BM-B-5-W) also had concentrations of benz(a)anthracene and benzo(a)pyrene exceeding the screening level value for aquatic life. It appears that the extent of groundwater impacts on the subject property is limited, specifically for the metals and PAH compounds noted above. In addition,

it is not apparent that concentrations detected in a limited portion of the property is impacting the Nehalem River surface water at similar concentrations (i.e. dilution and attenuation is expected away from the subject property). In addition, the small contribution of source material should be considered when evaluating impacts associated with the very low screening value utilized to assess aquatic life in a large body of water. Based on these considerations, it is not expected that a significant ecological risk is present associated with groundwater emanating from the subject property to the adjacent Nehalem River.

Based on these conclusions, Parametrix offers the following recommendations:

- 1. Limited residual soil contamination was identified at the subject property, primary in the area near the former machine shop. In addition, impacts to groundwater were identified in the central and northern portions of the property. However, based on the data evaluation and risk assessment, the contamination appears to be very limited in extent and magnitude and it does not appear that there is a potential risk to current users of the property. No further environmental investigation is recommended for the Botts Marsh Upland site based on current use.
- 2. If the property is to be redeveloped, there is potential to encounter contamination in near-surface or subsurface soils. However, the impacts identified appear to be limited and it is not expected that significant mitigation is required. The presence of potentially contaminated material (particularly soil) should be considered during any future development work, including the potential for grading, foundation work, or excavation at the site. Therefore, it is recommended that a contaminated media management plan (CMMP) be prepared for the site during planning of any future development project. The CMMP should be implemented during construction and include procedures for management of known and potentially unknown contaminated media. The CMMP should be structured to outline procedures for management of excess soils at the site, including proper handling, testing, and disposal (if necessary).

This page intentionally left blank.

1. INTRODUCTION

On behalf of Tillamook County, Parametrix conducted a Phase II Environmental Site Assessment (ESA) on the Botts Marsh Upland property (Tax Lots 300, 400, 4600, 4700 and 4800; herein referred to as the *subject property*) located in Wheeler, Oregon (Figure 1). The subject property is approximately 8.6 acres in size and is currently vacant (Figure 2). The subject property was used for various lumber operations in the past, but appears to have been largely vacant for at least the last 40 years. Current use of the property includes limited automobile and equipment storage on the southern end and periodic access to the Nehalem River in the central and northern portion by the public.

The Phase II investigation and associated activities were conducted as part of an Environmental Protection Agency (EPA) Brownfields Assessment Grant (Cooperative Agreement BF-00J94201-0) for the Salmonberry Trail in Tillamook County. The Tillamook County Department of Health received the assessment grant in October 2014 and has initiated project activities, including compilation of a brownfields inventory, site ranking, and environmental site assessments. The subject property was identified as a candidate for assessment activities to support potential redevelopment of the property. A Phase I ESA was conducted in September 2016 (Parametrix 2016b) as part of the Brownfields project, and recommended further investigation in the form of a Phase II ESA.

It is our understanding that the property may be developed into residential or commercial use by the current owner; however, at this time plans are only preliminary and may be subject to significant change. In addition, it is our understanding that the City of Wheeler may be interested in acquiring a portion of the property (northern portion) for a park or natural open space area. Similarly, the City of Wheeler is in the initial stages of planning and any acquisition plans are preliminary in nature. In general, the current Phase II ESA was completed to provide support for future planning efforts.

The primary purpose of the Phase II ESA was to evaluate current environmental conditions at the subject property and determine if the past use of the property had impacted subsurface conditions. Specific tasks included the collection of soil samples from 20 investigative borings and collection of groundwater samples from 6 of those borings. Conclusions and recommendations within this report are based on observed evidence and data collected during the performance of this assessment, as well as information obtained through previous investigations or documentation, where available.

The Phase II ESA was conducted in accordance with the project-wide Quality Assurance Project Plan (Parametrix 2016a), dated September 9, 2016, and the site-specific Sampling and Analysis Plan (Parametrix 2017) dated January 11, 2017.

1.1 Site Location

The subject property is located on the north side of Wheeler, Oregon between U.S. Highway 101 and the Nehalem River (Figure 1). The property is owned by Botts Marsh LLC and consists of Tillamook County Tax Lots 2N1002BC0-4600, 2N1002BC-04700, 2N1002BC-04800, 2N1002BB-00400, and 2N1002BB-00300. According to City of Wheeler records, the subject property is zoned Water Related Industrial.

The site location is shown on Figure 1, the Site Vicinity Map. The boundaries of the subject property are shown on Figure 2.

1.2 Site and Vicinity Characteristics

The entire subject property includes approximately 8.6 acres. The property includes a mostly vacant dirt and gravel lot, with overgrown, un-landscaped areas. At the northern end, there is a partially paved/partially dirt and gravel road that surrounds the property that is mostly made up of blackberries and other vegetation. The southern end is also vacant and includes a concrete slab and/or other evidence of former building foundations, with an area used for storage of boats, cars and other equipment (see Figure 2).

The vicinity of the subject property is light industrial, maritime, commercial, residential, and forested land. Properties in the vicinity include marshlands to the north, a railroad and U.S. Highway 101 directly east, the Nehalem River to the west, commercial properties and boat piers to the south, forested land to the east-northeast, and residential properties to the southeast (Figure 2).

1.3 Site History

The property housed the Wheeler Lumber Company (or associated lumber operations) from at least the 1920s through the 1950s or 1960s; however, it is not known precisely when operations on the site ceased. The facility was primarily a sawmill/shingle mill and consisted of several structures, including a dry kiln, planer, machine shop, conveyor line, fire pit, and other associated operations. The use and storage of chemicals, oils, or other hazardous substances used at the facility is unknown, but are presumed to have occurred in some capacity similar to other known sawmill/shingle mill facilities, which primarily use petroleum-based products (lube or cutting oils, fuel, etc.). By 1970, most structures appear to have been demolished, and the majority of the property appears to have been graded at that time.

The property appears to have been primarily vacant for the last 40 years. However, it does appear that the southern portion of the property has been used to store miscellaneous equipment or vehicles. In addition, it appears that at least some limited use of the northern portion of the property by the public has occurred in recent years, primarily for temporary parking/access to the river or for access to the extensive blackberries on the property.

1.4 Physical Setting

The subject property is located within the North Coast Basin, which is generally composed of volcanic rocks, marine sedimentary rocks, alluvium, and a prominent dunal sand complex. The highlands on the basin's eastern border consist mainly of volcanic rocks, including basalt lava flows extruded on land and underwater. Folding and faulting uplifted submarine lavas and other volcanic rocks. These rocks are exposed in the Coast Range and in the prominent headlands along the basin's western coastline. From north to south these headlands include Tillamook Head, Cape Falcon, Cape Mears, Cape Lookout, and Cascade Head. Marine sedimentary rocks including mudstone, siltstone, sandstone, and conglomerate are major rock types present in the North Coast Basin.

Unconsolidated alluvial sediments are present as valley fill deposits and along streams in the basin. The Tillamook Valley lowlands contain terrace alluvium up to 120 feet thick. These deposits contain basalt pebbles and cobbles in a sand, silt, and clay matrix. Along the river flood plain, alluvium consisting of gravel layered with sand, silt, and clay is present in deposits up to 300 feet thick.

In the area of the subject property, subsurface soils generally consisted of sandy gravel (interpreted as fill material) to a depth of three to six feet below ground surface (bgs) during the Phase II investigation. Sand, silt, and mixtures thereof were generally encountered beneath the sandy gravel to a depth of 10 feet bgs (bottom of the borings).

Groundwater depth at the subject property, which lies directly adjacent to the Nehalem River, it is expected to be very shallow (less than 10 feet) during most of the year. Throughout the Phase II investigation, which occurred during an extended period of heavy rainfall during the wet season, groundwater was encountered as high as 5 or 6 feet bgs. Groundwater flow is expected to be towards the west to the Nehalem River. However, oceanic tidal action of the bay can significantly influence both groundwater gradient and flow direction.

2. PREVIOUS INVESTIGATIONS

The following sections summarize the previous environmental investigation on the subject property.

2.1 September 2016 Phase I ESA

In September 2016, Parametrix conducted a Phase I ESA (Parametrix 2016a) for Tillamook County on the subject property. The work was completed as part of the Tillamook County Brownfields project. Conclusions of the Phase I ESA include:

- Based on information reviewed, the Wheeler Lumber Company or associated structures were present on the subject property from at least the 1920s through the 1950s or 1960s. However, it is not known when operations ceased. The facility was primarily a sawmill/shingle mill and consisted of several structures, including a dry kiln, planer, machine shop, conveyor line, fire pit, and other associated operations. It appears that facility operations may have extended towards and into the adjacent Nehalem River, based on the presence of remaining wood pilings in the river and former structure foundations along the river. The use and storage of chemicals, oils, or other hazardous substances used at the facility is unknown, but are presumed to have occurred in some capacity similar to other known sawmill/shingle mill facilities, which primarily use petroleum-based products (lube or cutting oils, fuel, etc.). Wood treatment operations were not identified during a review of historical information; however, the information was limited to Sanborn maps and aerial photographs and is not comprehensive. By 1970, most structures appear to have been demolished, and the majority of the property appears to have been graded at that time.
- The property appears to have been primarily vacant for the last 40 years. However, it does appear that the southern portion of the property has been used to store miscellaneous equipment or vehicles. In addition, it appears that at least some limited use of the northern portion of the property by the public has occurred in recent years, primarily for temporary parking/access to the river or for access to the extensive blackberries on the property.
- Several adjacent or nearby sites were identified in the regulatory record databases. However, based on the information reviewed, none of the sites identified represent a recognized environmental condition (REC) to the subject property. It should be noted that the railroad is located immediately adjacent to the subject property and past use of the railroad to support the former sawmill/shingle mill operations is likely. Although no specific RECs were identified with

the railroad, there is some potential that former railroad operations, including maintenance of the line or railcars, transport of oils or other substances, wood treated rail ties, or other typical operations has impacted environmental conditions near the railroad.

- No RECs were identified on the subject property during the site reconnaissance. No evidence of significant use or storage of hazardous substances and/or petroleum products, indications of spills, USTs, or distressed vegetation were observed.
- In the context of the Salmonberry Trail project, the subject property has the potential to provide an amenity to the trail or other infrastructure. Its location immediately adjacent to the Nehalem River and the proposed trail route provides an opportunity to utilize the subject property to enhance trail use or visibility.

The Phase I ESA recommended completion of a Phase II ESA based on the past use of the property as a lumber mill and significant redevelopment opportunities. The Phase II ESA was recommended to determine if these past operations have impacted the subsurface the property and to establish baseline environmental conditions.

3. PHASE II INVESTIGATION

On January 17 and 18, 2016, Parametrix supervised the drilling of 20 exploratory borings on the subject property. The locations of the borings are shown on Figure 2. The following sections describe the soil and groundwater sampling methods and analytical results.

3.1 Methods

The following sections describe the soil and groundwater sampling methods at the site. In general, the methods followed those outlined in the site-specific SAP (Parametrix 2017).

3.1.1 Soil Borings

Using a powered direct-push drill rig, Cascade Drilling, Inc. (Cascade Drilling) of Clackamas, Oregon, provided the drilling services and obtained all required permits from the Oregon Water Resources Department (OWRD). A total of twenty borings were completed on the subject property.

The direct-push probe consists of a section of hollow steel rod attached to a 5-foot long macro core sample barrel. After a section of the steel rod was advanced in each boring to specific sampling depths, the sampler, lined with a clear acetate liner, was attached to the rod and advanced 5 feet. The acetate liner containing the soil sample was then removed from the sample barrel, a clean liner inserted into the sample barrel, and the steel rod replaced into the boring. All borings were advanced to approximately 10 to 15 feet bgs. Boring logs are included in Appendix A.

The collection of soil samples from each boring was based on planned sampling intervals and field observations. In general, if there were no olfactory, PID, or visual indications of contamination, samples were collected from approximately 0 to 1 feet bgs, and deeper samples were collected near the soil/groundwater interface, generally from 5 to 10 feet bgs. Sample nomenclature includes the boring identification and the depth from which the sample was collected. For example, the sample collected from boring BM-B-1 at a depth of 9 feet bgs is labeled BM-B-1-9.0.

Soil samples were transferred from the clear PVC liners into appropriately labeled, laboratory-supplied 4- or 8-ounce glass jars with Teflon[®]-lined lids and placed into a cooler with ice. Samples collected for VOC analysis were placed in a cooler with dry ice to freeze samples until they could be transported to the lab for extraction. The samples were transported under chain-of-custody procedures to Specialty Analytical in Clackamas, Oregon. Forty-two soil samples were collected from the 20 borings and 31 were submitted for laboratory analysis. Laboratory analysis generally focused on diesel-range petroleum hydrocarbons using Northwest method NWTPH-Dx and RCRA 8 metals using EPA Methods 6020A/7471B. As specified in the SAP, the samples with the four highest diesel or lube oil concentrations (or Dx above 500 mg/kg) were analyzed for PAHs by EPA Method 8270D. In addition, based on past site activities and the historical location of site features (former mill buildings, location of log deck, location of burn pit, etc.) selected samples were analyzed for pentachlorophenol (PCP) and VOCs by EPA Methods 8270D and 8260B, respectively. Selected samples were also analyzed for dioxins/furans by EPA Method 1613B at Ceres Analytical Laboratory in El Dorado Hills, California.

3.1.2 Groundwater

Six groundwater samples were collected and submitted for laboratory analysis. The sample locations were chosen to provide spatial coverage of the site and to investigate groundwater quality in the vicinity of selected site features.

The groundwater samples were collected for laboratory analysis using the subsurface probe system's 5-foot-long by 0.75-inch-diameter sealed screen sampler. The groundwater sampling probe was advanced to the desired sampling depth and the screen was exposed by retracting the probe rods. Clean polyethylene tubing was then inserted through the steel rod to the bottom of the screen and attached at the surface to a pump. Prior to collecting groundwater samples, the borings were purged using a peristaltic pump until at least three bore volumes of groundwater we re removed and/or the groundwater cleared. Groundwater parameters including pH, temperature, and dissolved oxygen were also recorded to ensure that groundwater conditions had stabilized and representative samples were collected.

After purging activities were complete, groundwater samples were collected through the peristaltic pump. The samples were transferred into appropriately labeled 40-milliliter glass vials with Teflon[®] septum lids preserved with hydrochloric acid. Additional samples were collected using the peristaltic pump and transferred into appropriately labeled 32-ounce glass amber bottles and 500-milliliter plastic bottles with Teflon[®]-lined lids.

Groundwater samples were collected from near the bottom of their respective borings with a screened interval of approximately five to 10 feet bgs. As shown on the boring logs in Appendix A, the typical groundwater level during sampling was approximately five to six feet bgs. Sample nomenclature includes the boring identification and a 'W' to indicate a water sample. For example, a groundwater sample collected from boring BM-B-1 is labeled BM-B-1-W.

The groundwater samples were placed into a cooler with ice and transported under chain -of-custody procedures to Specialty Analytical for analysis. The samples were analyzed for diesel-range petroleum hydrocarbons using the NWTPH-Dx method. In addition, selected groundwater samples were analyzed for VOCs, PAHs, and RCRA 8 metals using EPA Methods 8260B, 8270D-SIM, and 6020A/7470A, respectively. Groundwater samples analyzed for dissolved RCRA 8 metals were filtered in the field using a disposable 0.45µm filter.

3.2 Subsurface Soil Characteristics

Soil samples were inspected in the field and classified by soil type. In general, subsurface soils generally consisted of sandy gravel (interpreted as fill) to a depth of three to six feet bgs. Sand, silt, and mixtures thereof were generally encountered beneath the sandy gravel to a depth of 10 feet bgs (bottom of the borings).

Boring logs are included in Appendix A.

3.3 Analytical Results and Extent of Contamination

Soil analytical results for all samples are summarized in Table 1 (TPH and metals), Table 2 (PAHs and VOCs), and Table 3 (Dioxins/Furans). Groundwater analytical results for all samples are summarized in Table 4 (TPH and metals) and Table 5 (PAHs and VOCs). Copies of the laboratory reports, chain-of-custody documentation, and data validation are included in Appendix B. Selected analytical results for soil and groundwater are shown on Figures 3 and 4.

For context, analytical results for soil and groundwater samples were primarily compared to DEQ risk-based concentrations (RBCs) (DEQ 2015). In addition, groundwater concentrations were compared to DEQ Ecological Screening Levels (DEQ 2001). A streamlined risk screening was completed and is included in Section 6.

For the purpose of evaluating analytical results and the extent of contamination, the site has been partitioned into three sections, each comprising approximately one-third of the site: the northern section, the central section, and the southern section.

3.3.1 Northern Section

The northern third of the site was the site of the former log deck and two former mill buildings (Figure 2). Results of soil and groundwater sampling in the northern section is included in the following sections.

3.3.1.1 Soil

Six borings (BM-B-1 through BM-B-6) were completed on the northern section of the site to investigate former features and/or operations. In general, non-detect or very low concentrations of target compounds were encountered in soil in the northern section of the site. In addition, no field indications suggesting contaminants or other evidence of spills or impacts were observed.

A total of seven soil samples were collected and analyzed for diesel-range petroleum hydrocarbons. Only one sample, BM-B-1-5.0 (as shown on Figure 3), had a detection of petroleum hydrocarbons (lube oil at 73.8 milligrams per kilogram [mg/kg]). Two of those seven samples were also analyzed for RCRA 8 metals. As noted on Table 1, only arsenic exceeded residential RBCs for soil contact. However, the concentrations of arsenic are below the calculated background concentrations for Oregon and consistent with naturally occurring conditions.

A total of four samples were also analyzed for PAHs, PCP, and/or VOCs. There were no detections of any of these compounds (Tables 1 and 2). One sample, BM-B-5-1.0, was analyzed for dioxins/furans. Very low detections of OCDD, total PeCDD, and total TCDF were detected; however, all were below the residential RBC for dioxin/furans equivalents (Table 3).

In general, soil contamination appears to be limited in the northern section of the site. It does not appear that former operations or current use have impacted the soil subsurface in any significant manner.

3.3.1.2 Groundwater

Two groundwater samples were collected from BM-B-1 and BM-B-5 (Figure 4) with the intent of evaluating groundwater conditions in the vicinity of the former mill building and the former log deck. As shown on Figure 4, both groundwater samples collected had detectable concentrations of diesel-range petroleum hydrocarbons. Hydraulic oil was detected in BM-B-1-W at a concentration of 3,380 micrograms per liter (µg/L) and diesel and lube oil were detected in BM-B-5-W at 204 µg/L and 1,070 µg/L, respectively. These concentrations were all below applicable RBCs (see Section 6 for risk evaluation).

Various metals were detected in the groundwater samples collected. However, none of the concentrations detected were significant and were below all applicable DEQ RBCs. Groundwater samples BM-B-1-W and BM-B-5-W had concentrations of barium and lead that exceeded DEQ Ecological Screening Level Values (SLVs) for aquatic life. These are further assessed in Section 6.

BM-B-1-W was non-detect for PAHs and VOCs. BM-B-5-W, located in the center of the former log deck, had detections of multiple PAH compounds. No PAHs detected exceeded the most stringent DEQ RBC. Two PAHs did exceed the DEQ SLVs for aquatic life (further assessed in Section 6). VOCs were not detected in sample BM-B-5-W.

Based on groundwater samples from these two borings, there are limited groundwater impacts in the northern portion of the site, primarily petroleum hydrocarbons. However, based on limited soil impacts in overlying soil, the source of the groundwater contamination in not apparent. In addition, based on the different ranges of hydrocarbons (hydraulic oil and diesel) in the two groundwater samples, it is not clear that the contaminants in the two locations represent a single, continuous impact in the northern section of the site.

3.3.2 Central Section

Historical features in the central portion of the site included a former machine shop and a burn pit (Figure 2). Results of soil and groundwater sampling in the central section is included in the following sections.

3.3.2.1 Soil

Two borings, BM-B-7 and BM-B-10, were located in the burn pit area; two borings, BM-B-11 and BM-B-12, were located in the vicinity of the former machine shop; and three additional borings, BM-B-8, BM-B-9, and BM-B-13, were located with intent of covering general use of the property, instead of focusing on a specific historical site feature.

Diesel range hydrocarbons in the vicinity of the former machine shop were detected primarily in near-surface soils (diesel at 21.1 mg/kg in BM-B-11 at 1.0 feet bgs and lube oil at 783 mg/kg and 501 mg/kg at 1.0 feet bgs in BM-B-11 and BM-B-12 respectively, Figure 3). Diesel was also detected in a deeper sample (23.5 mg/kg at 5.0 feet bgs) in BM-B-12. These concentrations are considered low or moderate and are significantly below applicable RBCs.

These samples were further analyzed for PAHs. As shown in Table 2, several PAHs were detected. Concentrations of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene exceeded residential RBCs (the most stringent RBCs) in the sample collected from BM-B-11 from 1 foot bgs.

Metals were detected in several samples, but generally below the most stringent DEQ RBC (Table 1). Only arsenic exceeded residential RBCs for soil contact. However, the concentrations of arsenic are below the calculated background concentrations for Oregon and consistent with naturally occurring conditions.

Concentrations of diesel-range petroleum hydrocarbons were detected in the former burn pit area, but at generally very low concentrations (max of 267 mg/kg in BM-B-13). Detected concentrations in samples from near surface (1.0-2.0 feet bgs) and deeper samples (5.5-7.0 feet bgs) were all below applicable RBCs. Samples analyzed for VOCs in the vicinity of the former burn pit were non-detect. Samples from BM-B-7 and BM-B-13 analyzed for metals also had detections of arsenic above residential RBCs for soil contact, but below background conditions. One burn pit sample, BM-B-7-1.0, was analyzed for dioxins/furans. Very low detections of OCDD and total HpCDD were noted, and below the residential RBC for dioxin equivalents (Table 3).

Based on the borings completed in the central portion of the site, there appears to be some soil contamination associated with petroleum hydrocarbons, primarily near the former machine shop. In general, the concentrations detected are low and likely limited in extent. However, it does appear that elevated levels of PAHs are present within one near-surface sample, but it is not expected that PAH contamination is significant in extent (based on other borings and field indications). Based on the sampling completed, it does not appear that former operations or current use have impacted the subsurface in a significant manner. The potential risk associated with residual contamination is discussed in Section 6.

3.3.2.2 Groundwater

Two groundwater samples were collected from BM-B-7 and BM-B-12 (Figure 4) with the intent of evaluating groundwater conditions in the vicinity of the former burn pit and the former machine shop, respectively. The groundwater sample collected from the BM-B-7 (former burn pit) was non-detect for diesel range hydrocarbons, PAHs, and VOCs. The sample collected from BM-B-12 had detections of both diesel (139 μ g/L) and lube oil (260 μ g/L); however, these are both below applicable RBCs. This sample was non-detect for VOCs.

Various metals were detected in the groundwater samples collected. However, none of the concentrations detected were significant and were below all applicable DEQ RBCs.

Based on groundwater samples from these two borings, there are limited groundwater impacts in the central portion of the site, primarily in the vicinity of the former machine shop where petro leum hydrocarbons were detected and are likely associated with the petroleum hydrocarbons detected in soil in the same vicinity. Detections of metals in groundwater may be related to fill material across the site.

3.3.3 Southern Section

Historical features in the southern portion of the site included former mill buildings (Figure 2). Results of soil and groundwater sampling in the southern section is included in the following sections.

3.3.3.1 Soil

Seven borings were located in the southern portion of the site focusing on site features including a concrete slab and former mill buildings (Figure 2). BM-B-14 was drilled immediately north of the existing concrete slab. Samples collected from this location were non-detect for diesel-range petroleum hydrocarbons. BM-B-15, immediately to the east near the boundary of the site, was also non-detect for petroleum hydrocarbons.

The remaining five borings, BM-B-16 through BM-B-20, were located in the vicinity of former mill structures at the southern end of the site. All seven samples analyzed from these borings were non-detect for diesel-range petroleum hydrocarbons. Select samples analyzed for PCP and VOCs were also non-detect.

Two samples, BM-B-16-6.0 and BM-B-19-1.0, were analyzed for metals and had detections of arsenic which exceeded applicable RBCs for soil contact. However, as noted previously, the arsenic concentrations are below calculated background concentrations for Oregon and consistent with naturally occurring conditions.

One sample, BM-B-20-1.0, was analyzed for dioxins/furans and had a detection of OCDD which was below the residential RBC for dioxin equivalents (Table 3).

In general, soil contamination appears to be limited in the southern section of the site. It does not appear that former operations or current use have impacted the soil subsurface in any significant manner.

3.3.3.2 Groundwater

Two groundwater samples, BM-B-15-W and BM-B-20-W, were collected in the southern portion of the site. BM-B-15-W was located near the eastern boundary of the site to the east of the concrete slab, and BM-B-20-W was located in the center of the former mill structures to evaluate groundwater quality in the vicinity of that historical site feature. Both samples were non-detect for diesel-range petroleum hydrocarbons (Figure 4). BM-B-20-W was also non-detect for PAHs. With the exception of acetone (70.9 μ g/L; there are no RBCs for acetone) VOCs were also non-detect in BM-B-20-W. RCRA 8 metals concentrations were not detected at concentration of any significance (Table 4).

Based on these analytical results, there is little impact to groundwater in the southern portion of the subject property.

4. LAND USE DETERMINATION

The land use of the subject property is typically used to define potential existing and future routes of exposure at the property. This land use determination was completed in order to evaluate these routes of exposure and aid in the risk evaluation. The land use determination was conducted in general accordance with the DEQ's Final Guidance, Consideration of Land Use in Environmental Remedial Actions (DEQ 1998).

4.1 Locality

DEQ guidance for a land use determination indicates that land use specifics must be determined for all properties within the locality of the facility. The locality is defined as a location where a human or ecological receptor may reasonably come into contact with hazardous substances or contaminants associated with the subject property.

As described above in Section 3.3, soil contamination associated with the subject property has not been documented beyond the boundaries of the property. Groundwater contamination has also not been documented beyond the property boundaries. The extent of soil and groundwater contamination associated with the site defines the locality as the area within the property boundary (Tax Lots 300, 400, 4600, 4700, and 4800).

4.2 Land Use in Locality

According to City of Wheeler records, the subject property is zoned Water Related Industrial. Since the initial development of the property as a lumber mill, land use has been industrial in nature; although it has been primarily vacant for the past 40 years. Adjacent properties to the north and south are zoned Estuarine Development. The adjacent property to the south and east is zoned Water Related Commercial.

Development plans for the Botts Marsh Upland site are unknown at this time. For this reason, all potential land use scenarios have been evaluated, including residential and commercial, though it is not apparent that current zoning allows for exclusively single-family residential development.

5. GROUNDWATER BENEFICIAL USE DETERMINATION

As part of the risk evaluation for the site (Section 6), current or reasonably likely future exposure pathways need to be established. Since contamination at the site includes impacted groundwater, an evaluation of the current and reasonably likely future beneficial uses of groundwater within the locality of the facility (LOF) was conducted. This was primarily completed to assess whether shallow groundwater has a beneficial use and to establish potential exposure pathways to support the risk evaluation. The beneficial use analysis is summarized below.

5.1 Water Rights

Information regarding groundwater points of diversion, groundwater registration points of diversion, and groundwater rights were obtained from the Oregon Water Resources Department (OWRD). According to the OWRD water rights map, there are no current water rights for groundwater use on the subject property or adjacent properties. In addition, it does not appear that there are significant groundwater rights located within 0.5 mile of the property (OWRD 2017).

5.2 Drinking Water Use

The OWRD database was utilized to obtain information regarding all wells within a one-mile radius of the site. There are no current drinking water wells within 0.5 mile of the property (OWRD 2017). In addition, it is not expected that shallow groundwater at the site would be utilized as drinking water. The

City of Wheeler has a well-established drinking water system which is supplied by a well or wells far from the subject property (east of the City approximately at least one mile). Shallow groundwater near the subject property is not of the quality or availability for drinking water; thus, drinking water is not a beneficial use of shallow groundwater at the site.

5.3 Irrigation

Shallow groundwater near the property is not used for irrigation purposes. The feasibility for utilizing shallow groundwater for irrigation near the subject property is low; thus, irrigation is not a beneficial use of shallow groundwater at the site.

5.4 Industrial and Engineering

There are no industrial or engineering uses of shallow groundwater near the site. As discussed above, the City of Wheeler has a well-established source of water. The feasibility for utilizing shallow groundwater for industrial or engineering purposes near the subject property is low; thus, industrial or engineering use is not a beneficial use of shallow groundwater at the site.

5.5 Surface Water Recharge

The Botts Marsh Upland site is located adjacent to the Nehalem River. Overall groundwater flow is presumed to be toward the river (though tidal conditions can influence groundwater direction), so it is likely that shallow groundwater has some interaction with or discharges to the river. As there is no recorded water right associated with the Nehalem River downstream of the site, there is no beneficial use of groundwater (as drinking water) at the site associated with a downstream beneficial use. However, surface water recharge is considered a beneficial use and included in the ecological risk evaluation.

5.6 Beneficial Use Determination Conclusions

There is no current or potential beneficial use of shallow groundwater as drinking water at the site. For this reason, drinking water RBCs are not evaluated as part of the risk assessment in Section 6.

6. RISK EVALUATION

Based on the results of the soil and groundwater sampling conducted on the Botts Marsh Upland site, a risk evaluation was completed to assess the potential risk of residual contaminants.

6.1 Exposure Path Summary

An exposure pathway is defined by four elements: 1) a source and mechanism of constituent release to the environment; 2) an environmental transport medium for the released constituent; 3) a point of potential contact with the impacted medium (the exposure point); and 4) an exposure route at the exposure point. Exposure can only occur when the potential exists for a receptor to directly contact released constituents at the point of release or when there is a transport mechanism for released constituents to a receptor at an exposure point. Without exposure, there is no risk. Therefore, the

exposure assessment is one of the key elements of any risk assessment and is summarized in the following sections.

6.1.1 Conceptual Site Model

A conceptual site model was developed for the site to determine potentially complete exposure pathways from site contaminants. As future development plans for the site are unknown, risk was evaluated for all reasonably likely potential receptors.

The conceptual site model is presented in Figure 5. The conceptual site model depicts potential releases and sources, environmental transport media, potential exposure pathways, potential exposure points, and potential human and ecological receptors. Each of these components of the exposure assessment is addressed in greater detail in the sections below.

6.1.2 Release/Source Analysis

The probable source of the constituents of potential concern (COPCs) detected in soils and groundwater at the site is historical use of the subject property as a mill and lumber processing facility. There are no ongoing primary sources of COPCs on the property.

6.1.3 Exposure Pathways, Exposure Points, and Receptors

Whether a constituent is actually of concern to human health depends on the likelihood of exposure (i.e., whether an exposure pathway exists). This section addresses the potential for exposure to COPCs detected in soil and groundwater under current or hypothetical future land use. The potential exposure scenarios to be assessed in the risk evaluation include a construction worker, an excavation worker (utility worker), an occupational worker, and a residential scenario (assessing future potential use). Based on the beneficial use analysis (Section 5), shallow groundwater at the site is not expected to be used as drinking water. Thus, exposure to COPCs via drinking water is not included in the risk evaluation.

As there is a connection between shallow groundwater in the area and the Nehalem River, impacts to ecological receptors including aquatic life, birds, and mammals were evaluated by comparing groundwater concentrations to DEQ Ecological Screening Levels.

6.1.3.1 Occupational Worker

There is no current exposure for occupational workers at the site. There is a potential for future development of the site to include commercial spaces which would allow for occupational exposure. Direct exposure to impacted soil would be unlikely, however, exposure via direct contact was evaluated using the occupational receptor exposures to provide a conservative analysis. In addition, potential exposure of groundwater via vapor intrusion into a future building was also assessed for occupational workers.

6.1.3.2 Residential User

The site does not currently have residential exposure. How ever, there is potential that the site could be redeveloped to mixed use in the future. Therefore, DEQ's residential scenario was assessed. While exposure via direct contact of subsurface soils is not likely, this pathway evaluates direct exposure as a

conservative measure. In addition, potential human exposure to groundwater contaminants via vapor intrusion into a future building was also assessed for residential users.

6.1.3.3 Excavation/Construction Worker

With expected site redevelopment in the future, a potential exists for exposure of construction workers to COPCs in soils via ingestion, dermal contact, and inhalation of volatile substances and airborne particulates. In addition, utility work at the site could expose excavation workers to site soils or groundwater within an excavation.

6.1.3.4 Ecological – Aquatic Life

As groundwater flow at the subject property is interpreted to flow west towards the Nehalem River, it is possible for dissolved COPCs to migrate from groundwater to surface water. Groundwater concentrations were compared to DEQ ecological screening levels for aquatic life to evaluate potential risk.

6.1.3.5 Ecological – Birds

As noted in Section 6.1.3.4, it is expected that groundwater flows toward and potentially interacts with surface water of the Nehalem River. As birds interact with the surface water and sediment, groundwater concentrations were compared to DEQ ecological screening levels for birds to evaluate potential risk.

6.1.3.6 Ecological – Mammals

As noted in Section 6.1.3.4, it is expected that groundwater flows to and potentially interacts with surface water of the Nehalem River. As mammals also interact with the surface water and sediment, groundwater concentrations were compared to DEQ ecological screening levels for mammals to evaluate potential risk.

6.2 Risk Characterization

Maximum detected concentrations of COPCs in soil and groundwater were compared to DEQ RBCs to provide an evaluation of the environmental risks associated with the site. RBCs protective of human health for exposure scenarios were selected from DEQ's guidance document Risk-Based Decision Making for the Remediation of Petroleum Contaminated Sites (DEQ 2003). It should be noted that DEQ updated the RBCs in November 2015 to reflect current toxicological and chemical characteristic information. The RBCs for each of the COPCs are shown on Tables 1 through 5.

6.2.1 Soil

The following evaluates the potential risk from soil for each of the established receptors. Soil sample results were compared to DEQ's most-recent RBCs for human exposure via soil ingestion, dermal contact, and inhalation (RBCss).

6.2.1.1 Residential Exposure

As shown in Tables 1 through 3, only arsenic and four PAHs (benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene) were detected in one or more samples at concentrations exceeding the DEQ RBCs for residential exposure.

Benz(a) anthracene, benzo(a) pyrene, benzo(b) fluoranthene, and/or indeno(1,2,3-cd) pyrene were detected in two samples (BM-B-11-1.0 and BM-B-12-1.0, each from 1.0 feet bgs, in the vicinity of the former machine shop) above the residential RBC for soil ingestion, dermal contact, and inhalation. Though there is no planned residential development for the site, if residential development does occur, these results should be considered.

Arsenic was detected at concentrations exceeding the residential DEQ RBC for soil ingestion, dermal contact, and inhalation in all eight samples analyzed for metals. However, all of the concentrations were below the calculated background concentration for arsenic in Oregon and consistent with naturally occurring conditions.

The area in the vicinity of the former machine shop may be considered an AOC (Area of Concern) for the residential use scenario. The residential exposure route was provided for a conservative analysis.

6.2.1.2 Occupational Exposure

As shown in Tables 1 through 3, only arsenic and benzo(a) pyrene were detected in one or more samples at concentrations exceeding the DEQ RBCs for occupational exposure.

Benzo(a) pyrene was detected in one sample (BM-B-11-1.0, from 1.0 feet bgs, in the vicinity of the former machine shop) slightly above the occupational RBC for soil ingestion, dermal contact, and inhalation. If commercial development does occur at the site, these results should be considered.

Arsenic was detected at concentrations exceeding the occupational DEQ RBC for soil ingestion, dermal contact, and inhalation in seven of the eight samples analyzed for metals. All detected concentrations of arsenic were below the calculated background concentrations for Oregon. Thus, arsenic is not considered a concern.

6.2.1.3 Excavation and Construction Worker Exposure

As shown in Tables 1 through 3, no analyzed constituents in soil exceeded the DEQ RBCs for excavation or construction worker exposure.

Based on these sample results, there is no potential risk to any receptors under the excavation and construction worker exposure scenarios.

6.2.2 Groundwater

The following evaluates the potential risk from groundwater for each of the established receptors. Note that drinking water use is not evaluated in this risk assessment. Excavation worker exposure to groundwater was assessed using DEQ's Groundwater in Excavation (RBCwe) RBCs. Residential and occupational exposure was assessed using DEQ's Volatilization to Outdoor Air (RBCwo) and Vapor Intrusion into Buildings (RBCwi) RBCs.

6.2.2.1 Residential Exposure

As shown in Tables 4 and 5, no analyzed constituents in groundwater exceeded the applicable DEQ RBCs for residential exposure.

Based on these sample results, there is no potential risk to receptors under the residential exposure scenario.

6.2.2.2 Occupational Exposure

As shown in Tables 4 and 5, no analyzed constituents in groundwater exceeded the DEQ RBCs for occupational exposure.

Based on these sample results, there is no potential risk to receptors under the occupational exposure scenario.

6.2.2.3 Excavation and Construction Worker Exposure

As shown in Tables 4 and 5, no analyzed constituents in groundwater exceeded the DEQ RBCs for excavation and construction worker exposure.

Based on these sample results, there is no potential risk to receptors under the excavation and construction worker exposure scenarios.

6.2.3 Ecological Risk

The following summarizes the potential ecological risk of site COPCs.

6.2.3.1 Ecological Soil Exposure – Invertebrates

As shown in Tables 1 and 2, no COPCs exceeded the EPA ecological soil screening levels for invertebrates, birds, or mammals.

6.2.3.2 Ecological Exposure – Aquatic Life

As shown in Tables 4 and 5, five groundwater samples had concentrations of at least one RCRA 8 metal (barium, lead, and/or silver) above the screening level value for aquatic life. One of these samples (BM-B-5-W) also had concentrations of benz(a)anthracene and benzo(a)pyrene exceeding the screening level value for aquatic life. It appears that the extent of groundwater impacts on the subject property is limited, specifically for the metals and PAH compounds noted above. In addition, it is not apparent that concentrations detected in a limited portion of the property is impacting the Nehalem River surface water at similar concentrations (i.e. dilution and attenuation is expected away from the subject property). In addition, the small contribution of source material should be considered when evaluating impacts associated with the very low screening value utilized to assess aquatic life in a large body of water. Based on these considerations, it is not expected that a significant ecological risk is present associated with groundwater emanating from the subject property to the adjacent Nehalem River.

6.2.3.3 Ecological Exposure – Birds

As shown in Tables 4 and 5, no analyzed constituents in groundwater exceeded the DEQ screening levels for exposure to birds from surface water and sediment. Based on these sample results, there is no potential risk to birds from COPCs in groundwater.

6.2.3.4 Ecological Exposure - Mammals

As shown in Tables 1 through 5, no analyzed constituents in groundwater exceeded the DEQ screening level for exposure to mammals from surface water and sediment. Based on these sample results, there is no potential risk to mammals from COPCs in groundwater.

7. CONCLUSIONS

Parametrix conducted a Phase II ESA on the Botts Marsh Upland site in Wheeler, Oregon. Based on the findings of this investigation, Parametrix reached the following conclusions:

- 1. A Phase I ESA on the subject property was conducted in September 2016. The Phase I ESA identified former structures and features associated with the Wheeler Lumber Company which operated at the site from at least the 1920s through the 1950s or 1960s. Based on historical aerial photographs, the site has been vacant since at least 1970. Current use includes storage of miscellaneous equipment and vehicles on the southern portion of the property and temporary/periodic use of the central and northern portion of the property by the public for access to the adjacent Nehalem River. The Phase I ESA was conducted as part of Tillamook County's Salmonberry Trail Brownfields Assessment Grant. A Phase II ESA was recommended to determine if the past operations have impacted the subsurface the property and to establish baseline environmental conditions in support of potential redevelopment of the property.
- 2. Parametrix supervised the drilling of twenty exploratory borings (labelled BM-B-1 to BM-B-20) to a depth of 10 to 15 feet bgs on the subject property. A total of 31 soil samples were analyzed by the laboratory for one or more target compounds, including diesel-range petroleum hydrocarbons (TPH-Dx), PAHs, VOCs, RCRA 8 metals, and/or dioxins/furans. Six of the 20 borings included groundwater samples. The investigation focused on determining whether the past use of the property had impacted subsurface conditions. For the purposes of evaluation, the property was divided into three portions; the northern portion, the central portion, and the southern portion.
- 3. Six borings were completed in the northern portion of the site, which was the location of the former log deck and two former mill buildings. A very low concentration of diesel-range petroleum hydrocarbons was detected in one sample (lube oil in sample BM-B-1-5.0 at 73.8 mg/kg). No other significant concentrations of target compounds were detected in soil in the northern portion of the property. It does not appear that former operations or current use have impacted the soil subsurface in any significant manner.
- 4. Seven borings were completed in the central portion of the site, which was the location of a former machine shop and burn pit. Moderate concentrations of diesel-range petroleum hydrocarbons were detected in several of the borings, at a maximum concentration of 783 mg/kg (sample BM-B-11-1.0-D). In addition, near-surface soil samples (1 foot) from borings BM-B-11 and BM-B-12, near the former machine shop, had detections of several PAHs above the most stringent DEQ RBCs (residential). No other significant concentrations of target compounds were detected in soil in the

central portion of the property. Based on the borings completed, there appears to be some soil contamination of petroleum hydrocarbons and associated compounds in the central portion of the site, primarily near the former machine shop. In general, the concentrations of COPCs detected are low and likely limited in extent. Widespread contamination was not observed through sampling or other field indications. However, it does appear that elevated concentrations of PAHs may be present within near-surface soils near boring BM-B-11, but it is not expected that PAH contamination is significant in extent laterally or vertically (based on other borings and field indications). In the event of future development, management of soils in the area near boring BM-B-11 may be necessary.

- 5. Seven borings were completed in the southern portion of the site, which is the location of a concrete slab and former mill buildings. In general, soil contamination appears to be limited in the southern section of the site. It does not appear that former operations or current use have impacted the soil subsurface in any significant manner.
- 6. Impacts to groundwater quality at the site appear to be limited to low levels of diesel-range petroleum hydrocarbons in the northern and central portions of the site, and detections of PAHs in one boring (BM-B-5) in the central portion of the property. Low levels of RCRA 8 metals were detected in all 6 borings, but none at significant concentrations. The source of groundwater impacts are not known, but may be related to former operations. In any event, residual groundwater contamination appears to be relatively low, considering the lack of shallow groundwater use as a drinking water source.
- 7. Current and former land use of the subject property has been industrial in nature. As development plans for the Botts Marsh Upland site are unknown at this time, all potential land use scenarios were evaluated including commercial (occupational) and residential. These were used in the development of a conceptual site model and exposure pathways as described in the risk evaluation.
- 8. Based on an evaluation of groundwater beneficial use, there is no current or potential beneficial use of shallow groundwater for drinking water at the site. For this reason, drinking water exposure was not evaluated as part of the risk assessment. However, a beneficial use of shallow groundwater is surface water recharge to the adjacent Nehalem River. Therefore, potential ecological impacts to the Nehalem River were evaluated as part of the risk assessment.
- 9. Based on the risk assessment, several PAHs [benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene] exceeded the DEQ RBC for residential exposure in one soil sample in the vicinity of the former machine shop (boring BM-B-11). Benzo(a)pyrene also slightly exceeded the DEQ RBC for occupational exposure to soil. It is not expected that PAH contamination in soil is significant in extent laterally or vertically (based on other borings and field indications). However, if residential or commercial development occurs in the future at the site in the vicinity of the former machine shop, these results should be considered for potential mitigation of near-surface soils to limit potential risk.
- 10. No COPCs exceeded the applicable DEQ RBCs for residential or occupational exposure to groundwater.
- 11. No COPCs exceeded the applicable DEQ RBCs for construction worker or excavation worker exposure to soil or groundwater.

- 12. No COPCs in soil samples exceeded the EPA ecological soil screening levels for invertebrates, birds, or mammals. No COPCs in groundwater exceeded the DEQ screening levels for birds and mammals associated with surface water or sediment exposure.
- 13. Five groundwater samples had concentrations of at least one RCRA 8 metal (barium, lead, and/or silver) above the DEQ screening level value for aquatic life. However, the concentrations of metals detected do not appear to be significantly elevated above expected naturally occurring conditions and a specific source of elevated metals was not observed in overlying soil. One groundwater sample (BM-B-5-W) also had concentrations of benz(a)anthracene and benzo(a)pyrene exceeding the screening level value for aquatic life. It appears that the extent of groundwater impacts on the subject property is limited, specifically for the metals and PAH compounds noted above. In addition, it is not apparent that concentrations detected in a limited portion of the property is impacting the Nehalem River surface water at similar concentrations (i.e. dilution and attenuation is expected away from the subject property). In addition, the small contribution of source material should be considered when evaluating impacts associated with the very low screening value utilized to assess aquatic life in a large body of water. Based on these considerations, it is not expected that a significant ecological risk is present associated with groundwater emanating from the subject property to the adjacent Nehalem River.

8. **RECOMMENDATIONS**

Based on the conclusions of the Phase II Environmental Site Assessment, the following are recommended:

- 1. Limited residual soil contamination was identified at the subject property, primary in the area near the former machine shop. In addition, impacts to groundwater were identified in the central and northern portions of the property. However, based on the data evaluation and risk assessment, the contamination appears to be very limited in extent and magnitude and it does not appear that there is a potential risk to current users of the property. No further environmental investigation is recommended for the Botts Marsh Upland site based on current use.
- 2. If the property is to be redeveloped, there is potential to encounter contamination in near-surface or subsurface soils. However, the impacts identified appear to be limited and it is not expected that significant mitigation is required. The presence of potentially contaminated material (particularly soil) should be considered during any future development work, including the potential for grading, foundation work, or excavation at the site. Therefore, it is recommended that a contaminated media management plan (CMMP) be prepared for the site during planning of any future development project. The CMMP should be implemented during construction and include procedures for management of known and potentially unknown contaminated media. The CMMP should be structured to outline procedures for management of excess soils at the site, including proper handling, testing, and disposal (if necessary).

9. REFERENCES

City of Wheeler. 2010. Wheeler Comprehensive Plan. 2010.

- DEQ (Oregon State Department of Environmental Quality). 1998. Consideration of Land Use in Environmental Remedial Actions. July 1, 1998.
- DEQ. 2001. Guidance for Ecological Risk Assessment, Levels I, II, III, IV. Updated, December 2001.
- DEQ. 2003. Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites. September 22, 2003.
- DEQ. 2004. Groundwater Quality Report for the North Coast Basin. October 2004.
- DEQ. 2013. Development of Oregon Background Metals Concentrations in Soil. March 2013.
- DEQ. 2015. Risk Based Concentrations, Updated. November 2015.
- OWRD (Oregon Water Resources Department). 2017. Oregon Water Resources Department. On-line Resources. Accessed February 13, 2017.
- Parametrix. 2016a. Quality Assurance Project Plan (QAPP), Salmonberry Trail, EPA Brownfields Assessment Grant, Tillamook County Department of Health, Tillamook, Oregon. September 9, 2016.
- Parametrix. 2016b. Phase I Environmental Site Assessment, Botts Marsh Upland Property, Wheeler, Oregon. Salmonberry Trail, EPA Brownfields Assessment Grant, Tillamook County Department of Health, Tillamook, Oregon. September 2016.
- Parametrix. 2017. Sampling and Analysis Plan, Botts Marsh Upland Site. Salmonberry Trail, EPA Brownfields Assessment Grant, Tillamook County Department of Health, Tillamook, Oregon. January 11, 2017.

This page intentionally left blank.

Tables

Table 1. Summary of Soil TPH and Metals Analytical Results

			Petroleum H	Petroleum Hydrocarbons		RCRA Metals									
Sample ID	Sample Depth (feet)	Sample Date	Diesel (mg/kg)	Lube Oil (mg/kg)	Total Arsenic (mg/kg)	Total Barium (mg/kg)	Total Cadmium (mg/kg)	Total Chromium (mg/kg)	Total Lead (mg/kg)	Total Selenium (mg/kg)	Total Silver (mg/kg)	Total Mercury (mg/kg)			
BM-B-1-1.0	BM-B-1-1.0 1.0 01/18/17		ND (<22.3)	ND (<74.2)	7.34	65.7	0.122	23.5	28.8	ND (<1.04)	0.144	0.0506			
BM-B-1-5.0 5.0 01/18/17		01/18/17	ND (<22.2)	73.8		-		-	-						
BM-B-2-1.0 1.0		01/18/17	ND (<20.6)	ND (<68.7)		-									
BM-B-3-1.0 1.0		01/18/17	ND (<21.0)	ND (<70.0)	-			-							
BM-B-4-1.0 1.0		01/18/17	ND (<20.9)	ND (<69.7)		-		-	-						
BM-B-5-1.0 1.0		01/18/17	ND (<23.0)	ND (<76.6)	3.46	96.5	0.102	13.8	6.83	ND (<0.972)	0.101	0.0289			
BM-B-6-1.0	1.0	01/18/17	ND (<17.9)	ND (<59.7)		-		-	-						
BM-B-6-1.0-D	1.0	01/18/17	ND (<18.5)	ND (<61.8)	-	-									
BM-B-7-1.0	1.0	01/18/17	ND (<19.2)	ND (<64.0)	-	-		-							
BM-B-7-5.5	5.5	01/18/17	ND (<19.2)	107	3.46	50.9	ND (<0.116)	23.0	7.4	ND (<0.116)	0.14	0.0226			
BM-B-8-2.0	2.0	01/17/17	ND (<17.9)	ND (<59.8)	-	-		-							
BM-B-9-0.5	0.5	01/17/17	ND (<18.7)	ND (<62.2)	-	-		-			-				
BM-B-10-2.0	2.0	01/17/17	19.8	ND (<64.8)	3.37	174	ND (<0.0998)	11.1	6.95	ND (<0.998)	0.127	0.0204			
BM-B-10-5.5	5.5	01/17/17	25.8	85.9	-	-		-			-				
BM-B-11-1.0	1.0	01/17/17	21.1	138	1.13	55.1	0.0996	17.1	4.39	ND (<0.975)	0.192	ND (<0.0165)			
BM-B-11-1.0-D	1.0	01/17/17	ND (<18.8)	783	3.28	57.5	ND (<0.101)	13.8	7.58	ND (<1.01)	ND (<0.101)	0.0184			
BM-B-12-1.0	1.0	01/17/17	ND (<17.6)	501	-	-	-	-	-	-	-				
BM-B-12-5.0	3M-B-12-5.0 5.0		23.5	ND (<69.0)	4.57	90.3	ND (<0.141)	35.3	7.44	ND (<1.41)	ND (<0.141)	ND (<0.0226)			
BM-B-13-1.0	M-B-13-1.0 1.0		ND (<17.8)	267		1	-	1	-	-					
BM-B-13-7.0	M-B-13-7.0 7.0		54.4	240	-	-	-	-	-	-	-				
BM-B-14-1.0	3M-B-14-1.0 1.0		ND (<16.7)	ND (<55.7)	-	-		-			-				
BM-B-14-5.5	BM-B-14-5.5 5.5		ND (<20.4)	ND (<67.9)	-	-		-			-				
BM-B-15-1.0	1.0	01/17/17	ND (<17.8)	ND (<59.5)	-	-		-	-						
BM-B-16-1.0	1.0	01/17/17	ND (<20.0)	ND (<66.5)	-	-		-							
BM-B-16-6.0	6.0	01/17/17	ND (<22.2)	ND (<73.9)	3.4	32.4	ND (<0.142)	24.7	4.23	ND (<1.42)	0.146	ND (<0.0247)			
BM-B-17-1.0	1.0	01/17/17	ND (<18.4)	ND (<61.2)	-			-							
BM-B-18-1.0	1.0	01/17/17	ND (<17.3)	ND (<57.3)	-			-							
BM-B-19-1.0	1.0	01/17/17	ND (<19.7)	ND (<65.8)	2.81	88.4	0.123	28.0	2.82	ND (<1.08)	0.18	0.0258			
BM-B-19-7.0	7.0	01/17/17	ND (<18.9)	ND (<63.0)				-							
BM-B-20-1.0	1.0	01/17/17	ND (<19.1)	ND (<63.6)	-	-		-			-				
BM-B-20-8.0	8.0	01/17/17	ND (<22.4)	ND (<74.6)											
DEQ RBCs- Soil I	ngestion, Derm	al Contact, and li	nhalation*		-	F	l	l	F	l	r	-			
Residential			1,100	2,800	0.43	15,000	78	NA	400	NA	390	23			
Occupational			14,000	36,000	1.9	190,000	510	NA	800	NA	5,100	310			
Construction Work	er		4,600	11,000	15	60,000	150	NA	800	NA	1,500	93			
Excavation Worker			>max	>max	420	>max	4,300	NA	800	NA	43,000	2,600			
DEQ RBCs - Vapor Intrusion Into Buildings															
Residential			>max	>max	NA	NA	NA	NA	NA	NA	NA	NA			
Occupational			>max	>max	NA	NA	NA	NA	NA	NA	NA	NA			
EPA Ecological Soil Screening Levels															
Invertebrate			NA	NA	NA	330	140	NA	1,700	4.1	NA	NA			
Bird			NA	NA	43	NA	0.77	NA	11	1.2	4.2	NA			
Mammal			NA	NA	46	2,000	0.36	NA	56	0.63	14	NA			

Notes:

mg/kg = milligrams per kilogram

ND = not detected (method reporting limit) --- = Sample was not analyzed for this constituent.

NA = not applicable or no value available

>max = The constituent RBC for this pathway is greater than 100,000 mg/kg or 100,000 mg/L. The DEQ believes it is highly unlikely that such concentrations will ever be encountered.

Bold values = detected concentrations

Bold values = concentrations detected above Applicable DEQ RBCs

J = Estimated Value

Table 2. Summary of Soil PAH, PCP and VOC Analytical Results

			PAHs														
Sample ID	Sample Depth (feet)	Sample Date	Acenaphthene (mg/kg)	Acenaphthylene (mg/kg)	Anthracene (mg/kg)	Benz(a)anthracene (mg/kg)	Benzo(a)pyrene (mg/kg)	Benzo(b)fluoranthene (mg/kg)	Benzo(g,h,i)perylene (mg/kg)	Benzo(k)fluoranthene (mg/kg)	Chrysene (mg/kg)	Fluoranthene (mg/kg)	Indeno(1,2,3-cd)pyrene (mg/kg)	Phenanthrene (mg/kg)	Pyrene (mg/kg)	Pentachlorophenol (mg/kg)	Volatile Organic Compounds
BM-B-1-5.0	5.0	01/18/17	ND (<0.003)	ND (<0.003)	ND (<0.003)	ND (<0.003)	ND (<0.003)	ND (<0.003)	ND (<0.003)	ND (<0.003)	ND (<0.003)	ND (<0.003)	ND (<0.003)	ND (<0.003)	ND (<0.003)		
BM-B-3-1.0	1.0	01/18/17														ND (<0.5)	
BM-B-5-1.0	1.0	01/18/17															ND
BM-B-7-1.0	1.0	01/18/17														ND (<0.5)	ND
BM-B-11-1.0-D	1.0	01/17/17	ND (<0.167)	0.200	0.167	0.367	0.533	0.300	0.567	0.167	0.300	0.667	0.433	0.267	1.1		
BM-B-12-1.0	1.0	01/17/17	ND (<0.033)	ND (<0.033)	ND (<0.033)	0.033	0.040	ND (<0.033)	0.047	ND (<0.033)	0.033	0.047	0.033	0.033	0.080		
BM-B-12-5.0	5.0	01/17/17	ND (<0.003)	ND (<0.003)	ND (<0.003)	0.005	0.006	0.005	0.006	0.003	0.007	0.008	0.005	0.005	0.013		
BM-B-14-1.0	1.0	01/17/17				-		-	-	-		-	-			ND (<0.5)	
BM-B-16-1.0	1.0	01/17/17															ND
BM-B-20-1.0	1.0	01/17/17														ND (<0.5)	ND
DEQ RBCs- Soi	l Ingestion, I	Dermal Conta	act, and Inha	lation			-							1		-	
Residential			4,700	NA	23,000	0.15	0.015	0.15	NA	2	15	2,400	0.15	NA	1,800	1.0	NA
Occupational			70,000	NA	350,000	2.9	0.29	2.9	NA	29	290	30,000	2.9	NA	23,000	4.0	NA
Construction Wo	Construction Worker			NA	110,000	24	2.4	24	NA	240	2,400	10,000	24	NA	7,500	34	NA
Excavation Work	er		590,000	NA	>max	660	67	670	NA	6,700	67,000	280,000	670	NA	210,000	960	NA
DEQ RBCs - Vapor Intrusion Into Buildings																	
Residential			>max	NA	>max	>Csat	NA	NA	NA	NA	NA	NA	>max	NA	>Csat	NA	NA
Occupational			>max	NA	>max	>Csat	NA	NA	NA	NA	NA	NA	>max	NA	>Csat	NA	NA
EPA Ecological Soil Screening Levels																	
Invertebrate			29	29	29	18	18	18	18	18	18	18	18	29	18	31	NA
Bird			NA 100	NA 100	INA 100	NA 1.1	NA 1.1	NA .	NA	NA	NA 1.1	NA 14	INA 4.4	NA 100	NA	2.1	NA
Mammal			100	100	100	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	100	1.1	2.8	NA

Notes:

PAHs = polynuclear aromatic hydrocarbons

mg/kg = milligrams per kilogram

ND = not detected (method reporting limit)

-- = Sample was not analyzed for this constituent.

NA = not applicable or not available

* = Reported result includes the combined area of the two isomers and should be ocnsidered the total of Benzo (b+k) Fluoranthenes.

Bold values = detected concentrations

Bold values = concentrations detected above applicable DEQ RBCs

>max = The constituent RBC for this pathway is greater than 100,000 mg/kg or 100,000 mg/L. The DEQ believes it is highly unlikely that such concentrations will ever be encountered.

>Csat = This soil RBC exceeds the limit of three-phase equilibrium partitioning. Soil concentrations in excess of Csat indicate that free product might be present.
Table 3 - Summary of Soil Dioxins/Furans Analytical Results

Sample ID		BM-B-5-1.0	0	BM-B-7-1.0		BM-B-20-1	.0	DEQ RBCs- Soil Ingestion, Dermal Contact, and		ontact, and	DEQ RB	Cs - Vapor	
	_				TEO				Inf	alation		Intrusion in	nto Buildings
Amelute	-							Residential	Occupational	Construction	Excavation	Residential	Occupational
			(pg/g)		(pg/g)		(pg/g)	(pg/g)	(pg/g)	worker (pg/g)	worker (pg/g)	(pg/g)	(pg/g)
	1	ND (0.435)	0	ND (0.343)	0	ND (0.482)	0	4					
	1	ND (0.731)	0	ND (0.565)	0	ND (0.628)	0	4					
	0.1	ND (1.25)	0	ND (0.898)	0	ND (0.793)	0	4					
1,2,3,0,7,0-HXCDD	0.1	ND (1.43)	0	ND (1.07)	0	ND (0.866)	0	4					
1,2,3,7,8,9-HXCDD	0.1	ND (1.28)	0	ND (0.946)	0	ND (0.797)	0	4					
1,2,3,4,6,7,8-HpCDD	0.01	ND (1.10)	0	3.39 EMPC	0.034	ND (0.525)	0	4					
	0.0003	8.47 J	0.003	38.0	0.011	5.72 J	0.002	1					
2,3,7,8-TCDF	0.1	ND (0.377)	0	ND (0.370)	0	ND (0.399)	0	1					
1,2,3,7,8-PeCDF	0.03	ND (0.438)	0	ND (0.586)	0	ND (0.538)	0	47	16	170	4 800	10 000	130 000
2,3,4,7,8-PeCDF	0.3	ND (0.305)	0	ND (0.349)	0	ND (0.256)	0		10		1,000	10,000	100,000
1,2,3,4,7,8-HxCDF	0.1	ND (0.698)	0	ND (0.698)	0	ND (0.576)	0						
1,2,3,6,7,8-HxCDF	0.1	ND (0.685)	0	ND (0.685)	0	ND (0.605)	0						
1,2,3,7,8,9-HxCDF	0.1	ND (0.769)	0	ND (0.769)	0	ND (0.658)	0						
2,3,4,6,7,8-HxCDF	0.1	ND (0.929)	0	ND (0.929)	0	ND (0.675)	0						
1,2,3,4,6,7,8-HpCDF	0.01	ND (0.506)	0	ND (0.506)	0	ND (0.295)	0	1					
1,2,3,4,7,8,9-HpCDF	0.01	ND (0.609)	0	ND (0.609)	0	ND (0.357)	0	1					
OCDF	0.0003	ND (1.97)	0	1.82 J	0.001	ND (1.18)	0	1					
Total TEQ			0.003		0.046		0.002	1					
Total TCDD		ND (0.435)		ND (0.343)		ND (0.482)							
Total PeCDD		1.46		ND (0.565)		ND (0.628)		1					
Total HxCDD		ND (1.43)		ND (1.07)		ND (0.866)		1					
Total HpCDD		ND (1.10)		4.50		ND (0.525)		1					
Total TCDF		1.56		ND (0.370)		ND (0.399)		1					
Total PeCDF		ND (0.438)		ND (0.586)		ND (0.538)	1	1					
Total HxCDF		ND (0.929)		ND (0.692)		ND (0.675)	1	1					
Total HpCDF		ND (0.609)		ND (0.690)		ND (0.357)							

 Notes:

 TEF
 Toxicity Equivalency Factor

 TEQ
 Toxicity Equivalent (Concentration X Toxicity Equivalency Factor)

 Source of avian TEFs :
 Van den Berg, et al., Toxic Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs for Humans and Wildlife, Environmental

 J
 The amound detected is below the low calibration limit.

 EMPC
 Estimated maximum potential concentration.

ND = not detected (sample specific reporting limit)

Table 4. Summary of Groundwater TPH and Metals Analytical Results

		Petr	roleum Hydroca	Hydrocarbons RCRA Metals																
Sample ID	Sample Date	Diesel (µg/L)	Hydraulic Oil (µg/L)	Lube Oil (µg/L)	Total Arsenic (μq/L)	Dissolved Arsenic (µq/L)	Total Barium (µg/L)	Dissolved Barium (µg/L)	Total Cadmium (μg/L)	Dissolved Cadmium (µg/L)	Total Chromium (μg/L)	Dissolved Chromium (µg/L)	Total Lead (µg/L)	Dissolved Lead (µg/L)	Total Selenium (μg/L)	Dissolved Selenium (µg/L)	Total Silver (µg/L)	Dissolved Silver (µg/L)	Total Mercury (μg/L)	Dissolved Mercury (µg/L)
BM-B-1-W	01/18/17	ND (<75.5)	3,380	ND (<189)	12.6		194		ND (<0.100)		7.35		48.1		ND (<1.0)		ND (<0.100)		ND (<0.100)	
BM-B-5-W	01/18/17	204		1,070	3.77	2.10	86.4	56.9	0.474	0.409	19.2	5.66	64.6	49.9	ND (<1.0)	ND (<1.0)	ND (<0.100)	ND (<0.100)	ND (<0.100)	ND (<1.0)
BM-B-7-W	01/18/17	ND (<75.6)		ND (<189)	8.96		199		0.502		5.01		55.8		1.24		0.133		ND (<0.100)	
BM-B-12-W	01/17/17	139		260	25.4	16.1	127	83.2	0.143	ND (<0.100)	15.7	0.607	11.7	0.207	ND (<1.0)	ND (<1.0)	0.164	ND (<0.100)	ND (<0.100)	ND (<0.100)
BM-B-15-W	01/17/17	ND (<77.0)		ND (<192)															ND (<0.100)	
BM-B-20-W	01/17/17	ND (<75.9)		ND (<190)	0.736		12		ND (<0.100)		2.66		2.26		ND (<1.0)		ND (<0.100)		ND (<0.100)	
BM-B-20-W-D	01/17/17	ND (<76.5)		ND (<191)	0.619		9.65		ND (<0.100)		2.15		1.70		ND (<1.0)		ND (<0.100)		ND (<0.100)	
DEQ RBCs- Ground	water Volatilization to Ou	Itdoor Air*			-															
Residential		>S	>S	>S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Occupational		>S	>S	>S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DEQ RBCs- Ground	water Vapor Intrusion int	o Buildings*																		
Residential		>S	>S	>S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Occupational		>S	>S	>S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DEQ RBCs- Ground	water in Excavation*																			
Construction & Excav	ration Worker	>S	>S	>S	6,300	6,300	>S	>S	130,000	130,000	>S	>S	>S	>S	NA	NA	1,100,000	1,100,000	>S	>S
DEQ Aquatic Life Wa	ater Quality Criteria																			
Aquatic Life		NA	NA	NA	150	150	NA	NA	*	*	*	*	*	*	4.6	4.6	0.10	0.10	0.01	0.012
DEQ Ecological Scr	eening Level Values - Su	rface Water/Fre	esh																	
Aquatic		NA	NA	NA	150	150	4	4	2.2	2.2	74	74	2.5	2.5	5	5	0.12	0.12	0.77	0.77
Birds		NA	NA	NA	18,000	18,000	150,000	150,000	10,000	10,000	7,200,000	7,200,000	28,000	28,000	3,600	3,600	NA	NA	3300	3,300
Mammals		NA	NA	NA	6,000	6,000	39,000	39,000	8,000	8,000	21,000,000	21,000,000	323,000	323,000	1,500	1,500	NA	NA	10,000	10,000

Notes:

TPH = total petroleum hydrocarbons

µg/L: micrograms per liter

ND = not detected (method reporting limit)

-- = Sample was not analyzed for this constituent.

NA = not applicable or no value available

Bold values = detected concentrations

Bold values = concentrations detected above applicable DEQ RBCs or Ecological SLVs/Water Quality Criteria

- = Sample not analyzed for this compound.

>S = This groundwater RBC exceeds the solubility limit. Groundwater concentrations in excess of S indicate that free product may be present.

Table 5. Summary of Groundwater PAH and VOC Analytical Results

PAHs VO										VOCs							
Sample ID	Sample Date	Acenaphthene (µg/L)	Acenaphthylene (µg/L)	Anthracene (µg/L)	Benz(a)anthracene (µg/L)	Benzo(a)pyrene (µg/L)	Benzo(b)fluoranthene (μg/L)	Benzo(g,h,i)perylene (µg/L)	Benzo(k)fluoranthene (μg/L)	Chrysene (µg/L)	Dibenz(a,h)anthracene (µg/L)	Fluoranthene (µg/L)	Fluorene (µg/L)	Indeno(1,2,3-cd)pyrene (µg/L)	Phenanthrene (µg/L)	Pyrene (µg/L)	Acetone (μg/L)
BM-B-1-W	01/18/17	ND (<0.0474)	ND (<0.0474)	ND (<0.0474)	ND (<0.0474)	ND (<0.0474)	ND (<0.0474)	ND (<0.0474)	ND (<0.0474)	ND (<0.0474)	ND (<0.0474)	ND (<0.0474)	ND (<0.0474)	ND (<0.0474)	ND (<0.0474)	ND (<0.0474)	ND (<50.0)
BM-B-5-W	01/18/17	0.0944	0.227	0.208	0.359	0.51	0.5	0.567	0.0661	0.406	0.151	0.878	0.236	0.368	0.434	1.48	ND (<50.0)
BM-B-7-W	01/18/17	ND (<0.0472)	ND (<0.0472)	ND (<0.0472)	ND (<0.0472)	ND (<0.0472)	ND (<0.0472)	ND (<0.0472)	ND (<0.0472)	ND (<0.0472)	ND (<0.0472)	ND (<0.0472)	ND (<0.0472)	ND (<0.0472)	ND (<0.0472)	ND (<0.0472)	ND (<50.0)
BM-B-12-W	01/17/17																ND (<50.0)
BM-B-20-W	01/17/17	ND (<0.0468)	ND (<0.0468)	ND (<0.0468)	ND (<0.0468)	ND (<0.0468)	ND (<0.0468)	ND (<0.0468)	ND (<0.0468)	ND (<0.0468)	ND (<0.0468)	ND (<0.0468)	ND (<0.0468)	ND (<0.0468)	ND (<0.0468)	ND (<0.0468)	ND (<50.0)
BM-B-20-W-D	01/17/17	ND (<0.0471)	ND (<0.0471)	ND (<0.0471)	ND (<0.0471)	ND (<0.0471)	ND (<0.0471)	ND (<0.0471)	ND (<0.0471)	ND (<0.0471)	ND (<0.0471)	ND (<0.0471)	ND (<0.0471)	ND (<0.0471)	ND (<0.0471)	ND (<0.0471)	70.9
DEQ RBCs- Groundwater Volati	lization to Outdoor A	ir*															
Residential		>S	NA	>S	>S	NA	NA	NA	NA	NA	NA	NA	>S	NA	NA	>S	NA
Occupational		>S	NA	>S	>S	NA	NA	NA	NA	NA	NA	NA	>S	NA	NA	>S	NA
DEQ RBCs- Groundwater Vapor	r Intrusion into Buildi	ngs*															
Residential		>S	NA	>S	>S	NA	NA	NA	NA	NA	NA	NA	>S	NA	NA	>S	NA
Occupational		>S	NA	>S	>S	NA	NA	NA	NA	NA	NA	NA	>S	NA	NA	>S	NA
DEQ RBCs- Groundwater in Exc	cavation*																
Construction and Excavation Work	kers	>S	NA	>S	>S	NA	NA	NA	NA	NA	NA	NA	>S	NA	NA	>S	NA
DEQ Aquatic Life Water Quality	Criteria																
Aquatic Life		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DEQ Ecological Screening Leve	l Values - Surface Wa	ter/Fresh															
Aquatic		520	NA	13	0.027	0.014	NA	NA	NA	NA	NA	6.16	3.9	NA	6.3	NA	1,500
Birds		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mammals		NA	NA	NA	NA	8,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	76

Notes:

PAHs = polynuclear aromatic hydrocarbons

µg/L: micrograms per liter

ND = Not Detected

Bold values = detected concentrations

Bold values = concentrations detected above applicable DEQ RBCs or Ecological SLVs/Water Quality Criteria

* = No Volatile Organic Compounds were detected in any groundwater samples

NA = Not Applicable or No Value Available

>S = This groundwater RBC exceeds the solubility limit. Groundwater concentrations in excess of S indicate that free product may be present.

Figures

Salmonberry Trail

. ∎Miles

Site Location

- Parcel
- Groundwater and Soil Sampling Location C
 - Soil Sampling Location Former Site Features

Sample Locations Tillamook County, OR

		A Recen	The for			Alter /		
) Actor					
		025	1 Kat					//
		A	BM-B-1 1.0'	Diesel Lu ND	ube Oil ND	PCP 	VOCs 	
		and a state of	5.0'	ND	73.8	- <i>118</i> 7		
		1 de ac		BM-B-2 D	iesel	Lube Oil	PCP	VOCs
			and the	1.0'	ND	ND		
						MAY COA	-	1
	Former Mill Build					FGON HIGHI		Com
BM-B-3 Die	esel Lube Oil PCP VOCs	- V / Fo	rmer Logyard		1/21	5	A LANDIN	and the
							N. Lasta	
BM-B-4 Diesel 1.0' ND	Lube Oil PCP VOCs ND			BM-B-5 1.0'	Diesel ND	Lube Oil ND	PCP 	VOCs ND
							~	CP S
1	Burr	ų Pit						
BM-B-7 Diesel Lube	OII PCP VOCs			BM-B-6	Diesel	Lube Oil	PCP	VOCs
5.5' ND 10	7			1.0'-D	ND	ND		
BM-B-9 Diesel Lube	OII PCP VOCs	-		BM-B-8 [Diesel ND	Lube Oil	PC P	VOCs
Fo	rmer Machine Shon			BM-B-10	Diesel	Lube Oil	PCP	VOCs
BM-B-11 Diesel Lube (Las	2.0'	19.8 25.8	ND 85.9		
1.0' 2 1.1 13 8 1.0'-D ND 78 3	B B			BM-B-13	Diesel	Lube Oil	PCP	VOCs
BM-B-12 Diesel Lube C	Dil PCP VOCs			7.0'	54.4	240		
5.0' 23.5 ND				BM-B-15	Diesel	Lube Oil	PCP	VOCs
BM-B-14 Diesel Lube Oil 1.0' ND ND	PCP VOCs ND	-	Concrete/Slab	A A				
5.5' ND ND			BM-B-16 Diesel	Lube Oil P		VOCs ND	HEN	LOCK
BM-B-17 Diesel Lube Oil 1.0' ND ND	PCP VOCs		6.0' ND	ND				- Sr
BM-B-19 Diesel Lube Oil	PCP VOCs		BM-B-18 Diesel L 1.0' ND	ND	VOCs	7.6		III
7.0' ND ND		Forme	r Mill Buildings	1 - T	-		1. 7	
0		BM -B-20	Diesel Lube Oil ND ND	ND N	s D			
		8.0	ND ND			1 -19-1		
		VE DA	ST K	15/				T
	K / / K / K /	MARI		1		SPRUC	EST	
	000		Parti		\downarrow			
LABEL LEGEND ND = Not Detected								7
BM-B-1 = Sample ID .05' = depth	R A Ros M				7	A		
All results in mg/kg PCB = Polychlorinated biphenyl	The Black		USDA,	USGS, AEX, G USEF Commun	etmapping	Aerogrid, IC	N, IGF swis	stope and
VOC = Volatile Organic Compounds					25 M			
arametrix	— c	ite Location			Figur	e 3: Bot	ts Mars	h Upland

P

- Groundwater and Soil Sampling Location
- Soil Sampling Location
 - Former Site Features

Soil Sample Locations and Results Tillamook County, OR

Salmonberry Trail

"X" Potentially complete pathway to be evaluated

"--" Incomplete pathway not evaluated

Botts Marsh Upland Site Wheeler, Oregon

Appendix A

Boring Logs

PROJECT NUMBER 273-2925-007/03/06 PROJECT NAME Salmonberry- Botts Marsh CLIENT Tillamook County LOCATION Wheeler, OR DRILLING COMPANY Cascade Drilling DRILLING DATE 1/18/2017 DRILLING METHOD Direct Push TOTAL DEPTH 10 feet

COMME	NTS				LOGGED BY Adam Romey	
Depth (ft)	DIA	Sample ID	% Recovery	Graphic Log	Material Description	Depth (ft)
(e) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) (OL I I I I I I I I I I I I I I I I I I I	Sample ID	-70%		Material Description Sandy Gravel - brown, fine to medium gravel, fine to coarse sand trace fines, dry. Silty Gravel - brown to gray, fine to medium gravel, 30% fines, trace fine sand, dry. Silt With Gravel - brown to gray, stiff, 20% fine gravel, moist. Silty Sand - gray, fine to medium sands, 20% fines, saturated. End of boring at: 10 feet	(i) utan
- 15 - 16 - 17 - 18 - 18 - 19 - 19						- 15 - 16 - 17 - 18 - 19

PROJECT NUMBER 273-2925-007/03/06 PROJECT NAME Salmonberry- Botts Marsh CLIENT Tillamook County LOCATION Wheeler, OR DRILLING COMPANY Cascade Drilling DRILLING DATE 1/18/2017 DRILLING METHOD Direct Push TOTAL DEPTH 15 feet

СОММЕ	NTS				LOGGED BY Adam Romey	
Depth (ft)	OIA	Sample ID	% Recovery	Graphic Log	Material Description	Depth (ft)
- 1		BM-B-2-1.0 /1020	-80%	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sandy Gravel - orange with brown mottling, fine to medium grave fine to coarse sand, trace fines, dry. silty Gravel - brown, fine to medium gravel, 20% fines, dry.	
					- brown, fine to medium gravel, 25% fines, moist.	
- 7 - 8 - 9 - 10		BM-B-2-7.5 1025	-60%			
- 11 - 12 - 13 - 14 - 14			-100%		Silty Sand - brown, medium to fine grained sand, 30% fines, saturated, organics at 12'. - gray, loose, increasing fines, saturated.	10 11 12 13 13 13 14 14 14 15
- 16 - 17 - 18 - 19					End of boring at: 10 feet	13 1 1 1 1 1 1 1 1 1 1 1 1 1

PROJECT NUMBER 273-2925-007/03/06 PROJECT NAME Salmonberry- Botts Marsh CLIENT Tillamook County LOCATION Wheeler, OR DRILLING COMPANY Cascade Drilling DRILLING DATE 1/18/2017 DRILLING METHOD Direct Push TOTAL DEPTH 10 feet

COMMENT	rs				LOGGED BY Adam Romey	
Depth (ft)	DIA	Sample ID	% Recovery	Graphic Log	Material Description	Depth (ft)
\square		BM-B-3-1.0 0945	-70%		Sandy Gravel - orange-brown to brown, fine to medium gravel, fine to coarse sand, trace fines, dry - brown. Z Silt - dark brown, stiff, organics, moist. End of boring at: 10 feet	\Box

PROJECT NUMBER 273-2925-007/03/06 PROJECT NAME Salmonberry- Botts Marsh CLIENT Tillamook County LOCATION Wheeler, OR DRILLING COMPANY Cascade Drilling DRILLING DATE 1/18/2017 DRILLING METHOD Direct Push TOTAL DEPTH 10 feet

СОММЕ	INTS				LOGGED BY Adam Romey	
Depth (ft)	QIA	Sample ID	% Recovery	Graphic Log	Material Description	Depth (ft)
		BM-B-4-1.0 0930 BM-B-4-6.0 0940	-30%		Sandy Gravel - brown, fine to coarse gravel, fine to coarse sand, trace fines, dry Sandy Silt with Gravel - brown to gray, stiff, fine to medium gravel 15% fine sand, saturated. Silty Gravel - dark gray, fine to medium gravel, 30% fines, saturated.	1 1 1 1 2 1 1 2 1 1 2 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1
					End of boring at: 10 feet	11 12 13 14 14 15 16 17 18 19

Boring Log BM-B-5

PROJECT NUMBER 273-2925-007/03/06 PROJECT NAME Salmonberry- Botts Marsh CLIENT Tillamook County LOCATION Wheeler, OR DRILLING COMPANY Cascade Drilling DRILLING DATE 1/18/2017 DRILLING METHOD Direct Push TOTAL DEPTH 10 feet

COMME	NTS				LOGGED BY Adam Romey	
Depth (ft)	OIA	Sample ID	% Recovery	Graphic Log	Material Description	Depth (ft)
		BM-B-5-1.0 1115 BM-B-5-4.0 1120 BM-B-5-W 1150	-80%	800 200 200 200 200 200 200 200 200 200	Sandy Gravel - brown, fine to medium gravel, fine to coarse sand trace fines, silt lenses, dry. ✓ - saturated. Sand with Gravel - gray, fine to medium sand, decreasing gravel with depth, saturated.	
10 11 12 13 14 15 16 17 18 19 19					End of boring at: 10 feet	- 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19

PROJECT NUMBER 273-2925-007/03/06 PROJECT NAME Salmonberry- Botts Marsh CLIENT Tillamook County LOCATION Wheeler, OR DRILLING COMPANY Cascade Drilling DRILLING DATE 1/18/2017 DRILLING METHOD Direct Push TOTAL DEPTH 10 feet

COMME	NTS				LOGGED BY Adam Romey	
Depth (ft)	OIA	Sample ID	% Recovery	Graphic Log	Material Description	Depth (ft)
		BM-B-6-1.0 1100 BM-FD-011817-S2 0000	-50%	20000000000000000000000000000000000000	Sandy Gravel - brown, fine to medium gravel, fine to coarse sand, trace fines,silt lenses, dry	- 2 - 3 - 4
		BM-B-6.0 1100	-50%		- saturated. ⊈ Sandy Silt - gray, fine sand, stiff, moist.	5
10 11 12 12 13 14 15 16 17 18 19 19					End of boring at: 10 feet	10 11 12 13 14 15 16 17 18 19

PROJECT NUMBER 273-2925-007/03/06 PROJECT NAME Salmonberry- Botts Marsh CLIENT Tillamook County LOCATION Wheeler, OR DRILLING COMPANY Cascade Drilling DRILLING DATE 1/18/2017 DRILLING METHOD Direct Push TOTAL DEPTH 10 feet

СОММЕ	NTS				LOGGED BY Adam Romey	
(ff)		Sample ID	covery	hic Log	Material Description	(ft)
Dept	G		% Re	Grap		Dept
- 1 - 2 - 3 - 4		/BM-B-7-1.0 /0900	-40%	20,000,000,000,000 20,000,000,000,000 20,000,000,000,000 20,000,000,000,000	Sandy Gravel - brown, fine to coarse gravel, fine to coarse sand, trace fines, dry.	- 1 - 2 - 3 - 4
- 6 - 7 - 7 - 8 - 9 - 9		BM-B-7-5.5 0910 BM-B-7-W 1240	-30%	1. 0. 1. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Silty Gravel - gray, fine to medium gravel, 30% fines, sand near 6.5', grades to silt near 10', saturated.	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				0.000		E 10
- 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19					End of boring at: 10 feet	10 11 12 13 14 15 16 17 18 19 19

PROJECT NUMBER 273-2925-007/03/06 PROJECT NAME Salmonberry- Botts Marsh CLIENT Tillamook County LOCATION Wheeler, OR DRILLING COMPANY Cascade Drilling DRILLING DATE 1/17/2017 DRILLING METHOD Direct Push TOTAL DEPTH 10 feet

COMME	NTS				LOGGED BY Adam Romey	
Depth (ft)	QL	Sample ID	% Recovery	Graphic Log	Material Description	Depth (ft)
1		BM-B-8-2.0 1500 BM-B-8-5.5 1510	-60%		Silty Sandy Gravel - brown to gray near 2.5', fine to medium gravel, fine to coarse sand, 20% fines, dry. Silty Gravel - brown to gray, fine to medium gravel, 30% fines, onl trace fine sands. - saturated. Silt - gray, stiff, moist. End of boring at: 10 feet	1
- 19						

PROJECT NUMBER 273-2925-007/03/06 PROJECT NAME Salmonberry- Botts Marsh CLIENT Tillamook County LOCATION Wheeler, OR DRILLING COMPANY Cascade Drilling DRILLING DATE 1/17/2017 DRILLING METHOD Direct Push TOTAL DEPTH 10 feet

COMME	NTS				LOGGED BY Adam Romey	
Depth (ft)	OIA	Sample ID	% Recovery	Graphic Log	Material Description	Depth (ft)
-		BM-B-9-0.5		0. 19:00	Silt with Gravel - brown, darker with depth, stiff, 25% fines, fine to	F
		BM-B-9-4.0 1450	-80%		medium gravel, dry, moist near 5.0'.	1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
- 6 - 7 - 7 9			-50%		Silty Sand - gray, loose, fine sand, 30% fines, saturated.	
- 10					End of boring at: 10 feet	E
- 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19						11 11 12 13 14 14 15 16 17 18 19

PROJECT NUMBER 273-2925-007/03/06 PROJECT NAME Salmonberry- Botts Marsh CLIENT Tillamook County LOCATION Wheeler, OR DRILLING COMPANY Cascade Drilling DRILLING DATE 1/17/2017 DRILLING METHOD Direct Push TOTAL DEPTH 10 feet

COMMENTS Driller noted hard from 4'-6', no signs of concrete.

LOGGED BY Adam Romey

Depth (ft)	DIA	Sample ID	% Recovery	Graphic Log	Material Description	Depth (ft)
		BM-B-10-2.0 1430 BM-B-10-5.5 1440	-70%		Gravel / Cobbles Silty Gravel to Silt - brown, medium stiff, fine to medium gravel. Silty Gravel - dark brown to gray, fine to coarse gravel, 30% fines, Silt - dark gray, stiff, moist.	-1 -1 -2 -3 -4 -5 -6 -7 -8 -9 -1
10 11 12 12 13 14 15 16 17 18 19					End of boring at: 10 feet	- 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19

PROJECT NUMBER 273-2925-007/03/06 PROJECT NAME Salmonberry- Botts Marsh CLIENT Tillamook County LOCATION Wheeler, OR DRILLING COMPANY Cascade Drilling DRILLING DATE 1/17/2017 DRILLING METHOD Direct Push TOTAL DEPTH 10 feet

COMMENTS Driller noted hard from 4'-6', no signs of concrete.

LOGGED BY Adam Romey

Recovery Graphic Log Material Description Sample ID € £ Depth Depth 믭 % Sandy Silt / Debris - brown, fine to medium gravel, medium to BM-B-11-1.0 coarse sand, trace fines, dry. 1340 Εı 1 BM-FD-011717-S1 0000 Ē2 2 -70% 3 - 3 Silt with Woody Debris - brown to dark gray, medium stiff, trace fine sand, moist. 4 4 - 5 - 5 Silt - dark gray, medium stiff, trace fine sand, moist. BM-B-11-6.5 6 6 1345 Sand - dark gray, fine to medium sand, trace fines, moist. E7 7 Silt - dark gray, stiff, moist. -90% Sand - dark gray, fine to medium sand, trace fines saturated. 8 8 - 9 - 9 10 10 End of boring at: 10 feet F 11 11 12 12 13 13 14 14 - 15 15 - 16 16 F 17 17 L 18 - 18 19 19

PROJECT NUMBER 273-2925-007/03/06 PROJECT NAME Salmonberry- Botts Marsh CLIENT Tillamook County LOCATION Wheeler, OR DRILLING COMPANY Cascade Drilling DRILLING DATE 1/17/2017 DRILLING METHOD Direct Push TOTAL DEPTH 10 feet

COMMENTS Driller hit something hard at ~5.0'.

LOGGED BY Adam Romey

Depth (ft)	OLA	Sample ID	% Recovery	Graphic Log	Material Description	Depth (ft)
- - - - - - - - - - - - - - - - - - -		BM-B-12-1.0 1210	-80%		Sandy Gravel / Debris - brown, fine to medium gravel, medium to coarse sand, trace fines, dry.	- 1
		BM-B-12-5.0 1215			Sandy Gravel - brown, fine to medium gravel, medium to coarse sand, trace fines, dry.	
		BM-B-12-W 1235	-40%			
- 9 					End of boring at: 10 feet	- 9 - 10 - 10 - 11
12 12 13						12 12 13
- 14 - 14 - 15						- 14 - 14 - 15
16 						16
- 18 						- 18 - 18 - 19 - 19

Boring Log BM-B-13

PROJECT NUMBER 273-2925-007/03/06 PROJECT NAME Salmonberry- Botts Marsh CLIENT Tillamook County LOCATION Wheeler, OR DRILLING COMPANY Cascade Drilling DRILLING DATE 1/17/2017 DRILLING METHOD Direct Push TOTAL DEPTH 10 feet

СОММЕ	INTS							LOGGED BY Adam Romey	
Depth (ft)	OIA	Sample ID	% Recovery		Granhie Log			Material Description	Depth (ft)
- 1		BM-B-13-1.0 1405		0.00	.0 .	2°° 2°°	00.00	Sandy Gravel - brown, fine to medium gravel, medium to coarse sand, trace fines, dry.	
- 2 - 3 - 4								Silt - brown, stiff, moist.	
- 6 - 7 - 8 - 9		BM-B-13-7.0 1410						- stiff from 8.0' to 9.5'.	
- 9					ļļļ	ļļļ			Ē
- 10								Sand - gray, loose, fine grained, saturated.	
- 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19									- 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19

Boring Log BM-B-14

PROJECT NUMBER 273-2925-007/03/06 PROJECT NAME Salmonberry- Botts Marsh CLIENT Tillamook County LOCATION Wheeler, OR DRILLING COMPANY Cascade Drilling DRILLING DATE 1/17/2017 DRILLING METHOD Direct Push TOTAL DEPTH 10 feet

COMMENTS LOGGED BY Adam Romey Graphic Log Recovery Sample ID Material Description Depth (ft) £ Depth ЪD % N°°°¢ Sandy Gravel / Debris - brown, fine to medium gravel, medium to *°*. BM-B-14-1.0 coarse sand, trace fines, dry. 1315 1 1 2 3 •0 õ 1 C , OG. Ō 0 2 00 ۰Q õ -30% ů 0 0 3 0 0 °0d' •0 Ő Ġ 0 ß - 4 00 ۰Q BM-B-14-5.5 5 1320 Sand - gray, loose, fine grained, saturated, trace fines. 6 E 7 7 -50% 8 9 E 10 -10 End of boring at: 10 feet E - 11 E 11 - 12 12 -- 13 13 14 14 15 14 15 E 16 E 16 E - 17 _ 17 ----18 -18 E 19 19

Disclaimer This bore log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 13 Feb 2017

Boring Log BM-B-15

PROJECT NUMBER 273-2925-007/03/06 PROJECT NAME Salmonberry- Botts Marsh CLIENT Tillamook County LOCATION Wheeler, OR DRILLING COMPANY Cascade Drilling DRILLING DATE 1/17/2017 DRILLING METHOD Direct Push TOTAL DEPTH 10 feet

COMMENTS LOGGED BY Adam Romey Graphic Log Recovery Sample ID Material Description € € Depth Depth ЪD % Sandy Gravel - brown, fine to medium gravel, medium to coarse *°*. BM-B-15-1.0 sand, trace fines, dry. 0.0 1110 1 1 2 1 1 2 3 1 , B.o 0 2 •0 00 Ő -60% 0 0 3 0 00 õ G 0 E - 4 4 С 0 00' ů BM-B-15-5.5 5 00 0 1150 , C , C 0 Ċ° ĉ 6 Ē BM-B-15-W Silty Sand - gray, fine grained, loose, 15% fines, saturated. 7 7 1145 -70% ----8 8 - 9 9 Ē 10 10 End of boring at: 10 feet E - 11 E 11 - 12 12 -- 13 13 E - 14 E 14 --15 -15 E 16 E 16 E - 17 _ 17 18 E 19 E 19

Disclaimer This bore log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 13 Feb 2017

Boring Log BM-B-16

PROJECT NUMBER 273-2925-007/03/06 PROJECT NAME Salmonberry- Botts Marsh CLIENT Tillamook County LOCATION Wheeler, OR DRILLING COMPANY Cascade Drilling DRILLING DATE 1/17/2017 DRILLING METHOD Direct Push TOTAL DEPTH 10 feet

COMMENTS LOGGED BY Adam Romey Graphic Log Recovery Sample ID Material Description Depth (ft) £ Depth ЪD % Sandy Gravel - brown, fine to medium gravel, medium to coarse *°*. BM-B-16-1.0 grained sand, trace fines, dry. 0.0 1055 1 1 2 3 1 , C.o 2 •0 00 Ő -50% 0 0 3 0 •0 00 Ő G 0 C - 4 0 ۰Q 5 BM-B-16-6.0 Sand - gray, fine grained, loose, saturated. 1100 6 E 7 7 -60% 8 9 E 10 10 End of boring at: 10 feet E - 11 E 11 - 12 12 -- 13 13 14 14 15 14 15 E 16 E 16 E - 17 _ 17 18 E - 19 E 19

Disclaimer This bore log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 13 Feb 2017

Boring Log BM-B-17

PROJECT NUMBER 273-2925-007/03/06 PROJECT NAME Salmonberry- Botts Marsh CLIENT Tillamook County LOCATION Wheeler, OR DRILLING COMPANY Cascade Drilling DRILLING DATE 1/17/2017 DRILLING METHOD Direct Push TOTAL DEPTH 10 feet

COMMENTS LOGGED BY Adam Romey Graphic Log Recovery Sample ID Material Description Depth (ft) £ Depth ЪD % Sandy Gravel - brown, medium to coarse sand, fine to medium BM-B-17-1.0 gravel, trace fines, dry. 1015 1 1 2 3 1 2 0.0 -80% 0 3 BM-B-17-4.0 Sand - gray, fine grained, moist. 1020 4 - saturated. 5 6 7 7 -80% 8 9 Ē 10 10 End of boring at: 10 feet --11 11 - 12 12 E - 13 -13 14 14 15 14 15 E 16 16 17 18 18 19 _ 17 18 19

Disclaimer This bore log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 13 Feb 2017

Boring Log BM-B-18

PROJECT NUMBER 273-2925-007/03/06 PROJECT NAME Salmonberry- Botts Marsh CLIENT Tillamook County LOCATION Wheeler, OR DRILLING COMPANY Cascade Drilling DRILLING DATE 1/17/2017 DRILLING METHOD Direct Push TOTAL DEPTH 10 feet

COMMENTS LOGGED BY Adam Romey Graphic Log Recovery Sample ID Material Description Depth (ft) £ Depth ЪD % Sandy Gravel - brown, medium to coarse sand, fine to medium BM-B-18-1.0 gravel, trace fines, some silt, dry. 1030 1 1 2 3 1 2 0.0 -80% 0 3 BM-B-18-4.0 Sand - gray, fine grained, moist. 1040 4 - saturated. 5 6 7 7 -70% 8 Silt - gray, stiff, saturated. 9 E 10 10 End of boring at: 10 feet --11 11 - 12 12 E - 13 -13 14 14 15 14 15 E 16 16 17 18 18 19 - 17 18 19

Disclaimer This bore log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 13 Feb 2017

Boring Log BM-B-19

PROJECT NUMBER 273-2925-007/03/06 PROJECT NAME Salmonberry- Botts Marsh CLIENT Tillamook County LOCATION Wheeler, OR DRILLING COMPANY Cascade Drilling DRILLING DATE 1/17/2017 DRILLING METHOD Direct Push TOTAL DEPTH 10 feet

COMME	INTS					
Depth (ft)	DIA	Sample ID	% Recovery	Graphic Log	Material Description	Depth (ft)
1		BM-B-19-1.0 0955	-60%		Sandy Gravel - brown, medium to coarse sand, fine to medium gravel, trace fines, dry.	1 1 2 1 3 1 4 4 5
		BM-B-19-7.0 1000	-60%		Sand - gray, fine grained, loose, saturated.	
10 11 12 13 14 15 16 17 18 19 19					End of boring at: 10 feet	10 11 12 13 13 14 14 15 16 17 18 19 19

Disclaimer This bore log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 13 Feb 2017

Boring Log BM-B-20

PROJECT NUMBER 273-2925-007/03/06 PROJECT NAME Salmonberry- Botts Marsh CLIENT Tillamook County LOCATION Wheeler, OR DRILLING COMPANY Cascade Drilling DRILLING DATE 1/17/2017 DRILLING METHOD Direct Push TOTAL DEPTH 15 feet

СОММЕ	NTS				LOGGED BY Adam Romey	
Depth (ft)	014	Sample ID	% Recovery	Graphic Log	Material Description	Depth (ft)
- - - - - - - - - - - - - - - - - - -		BM-B-20-1.0 0845	- 80%		Sandy Gravel - brown, dry, medium to large grained sand, fine to medium gravel, trace fines.	- - - - - - - - - - - - - - - - - - -
- 5 - 6 - 7 - 8 - 9 - 10		BM-B-20-8.0 0850			- gray to brown. Sand - gray, fine, loose, saturated. ⊈ - stiff.	- 5 - 6 6 7 8 9 10
- 11 - 12 - 13 - 14 - 15		BM-B-20-W 0915 BM-FD-011717-W 0000	—100%		Silt - brown, stiff, moist.	- 11 - 12 - 13 - 13 - 14 - 15
- 13 - 16 - 17 - 17 - 18 - 19					End of boring at: 10 feet	10

Disclaimer This bore log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 13 Feb 2017

Appendix B

Laboratory Analytical Reports and Data Validation

11711 SE Capps Road, Ste B Clackamas, Oregon 97015 TEL: 503-607-1331 FAX: 503-607-1336 Website: <u>www.specialtyanalytical.com</u>

February 06, 2017

Richard Roche Parametrix 700 NE Multnomah Blvd Suite 1000 Portland, OR 97232 TEL: (503) 233-2400 FAX: (503) 233-4825 RE: Salmonberry -Botts Marsh / 2732925007 Dear Richard Roche:

Order No.: 1701106

Specialty Analytical received 50 sample(s) on 1/19/2017 for the analyses presented in the following report.

There were no problems with the analysis and all data for associated QC met EPA or laboratory specifications, except where noted in the Case Narrative, or as qualified with flags. Results apply only to the samples analyzed. Without approval of the laboratory, the reproduction of this report is only permitted in its entirety.

If you have any questions regarding these tests, please feel free to call.

Sincerely,

anud

Marty French Lab Director

Date Reported:

06-Feb-17

CLIENT:

Project:

Parametrix

Collection Date: 1	/17/2017 8:45:00 AM
--------------------	---------------------

Salmonberry -Botts Marsh / 2732925007

Lab ID: 1701106-001 **Client Sample ID:**

BM-B-20-1.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX		NWTPH-DX				Analyst: JRC
Diesel	ND	19.1		mg/Kg-dry	1	1/27/2017 12:07:00 AM
Lube Oil	ND	63.6		mg/Kg-dry	1	1/27/2017 12:07:00 AM
Surr: o-Terphenyl	78.3	50-150		%REC	1	1/27/2017 12:07:00 AM
SEMI-VOLATILE COMPOUNDS -	ACID FRACTIO	N SW8270D				Analyst: CK
Pentachlorophenol	ND	500		µg/Kg	1	1/30/2017 4:28:00 PM
Surr: 2,4,6-Tribromophenol	47.8	39.1-119		%REC	1	1/30/2017 4:28:00 PM
Surr: 2-Fluorophenol	45.9	40.7-111		%REC	1	1/30/2017 4:28:00 PM
Surr: Phenol-d6	57.2	37.5-117		%REC	1	1/30/2017 4:28:00 PM
VOLATILE ORGANIC COMPOUNI	DS BY GC/MS	SW8260B				Analyst: CK
1,1,1,2-Tetrachloroethane	ND	15.4		µg/Kg-dry	1	1/30/2017 7:21:00 PM
1,1,1-Trichloroethane	ND	15.4		µg/Kg-dry	1	1/30/2017 7:21:00 PM
1,1,2,2-Tetrachloroethane	ND	15.4		µg/Kg-dry	1	1/30/2017 7:21:00 PM
1,1,2-Trichloroethane	ND	15.4		µg/Kg-dry	1	1/30/2017 7:21:00 PM
1,1-Dichloroethane	ND	15.4		µg/Kg-dry	1	1/30/2017 7:21:00 PM
1,1-Dichloroethene	ND	15.4		µg/Kg-dry	1	1/30/2017 7:21:00 PM
1,1-Dichloropropene	ND	15.4		µg/Kg-dry	1	1/30/2017 7:21:00 PM
1,2,3-Trichlorobenzene	ND	15.4		µg/Kg-dry	1	1/30/2017 7:21:00 PM
1,2,3-Trichloropropane	ND	15.4		µg/Kg-dry	1	1/30/2017 7:21:00 PM
1,2,4-Trichlorobenzene	ND	15.4		µg/Kg-dry	1	1/30/2017 7:21:00 PM
1,2,4-Trimethylbenzene	ND	15.4		µg/Kg-dry	1	1/30/2017 7:21:00 PM
1,2-Dibromo-3-chloropropane	ND	15.4		µg/Kg-dry	1	1/30/2017 7:21:00 PM
1,2-Dibromoethane	ND	15.4		µg/Kg-dry	1	1/30/2017 7:21:00 PM
1,2-Dichlorobenzene	ND	15.4		µg/Kg-dry	1	1/30/2017 7:21:00 PM
1,2-Dichloroethane	ND	15.4		µg/Kg-dry	1	1/30/2017 7:21:00 PM
1,2-Dichloropropane	ND	15.4		µg/Kg-dry	1	1/30/2017 7:21:00 PM
1,3,5-Trimethylbenzene	ND	15.4		µg/Kg-dry	1	1/30/2017 7:21:00 PM
1,3-Dichlorobenzene	ND	15.4		µg/Kg-dry	1	1/30/2017 7:21:00 PM
1,3-Dichloropropane	ND	15.4		µg/Kg-dry	1	1/30/2017 7:21:00 PM
1,4-Dichlorobenzene	ND	15.4		µg/Kg-dry	1	1/30/2017 7:21:00 PM
2,2-Dichloropropane	ND	15.4		µg/Kg-dry	1	1/30/2017 7:21:00 PM
2-Butanone	ND	61.7		µg/Kg-dry	1	1/30/2017 7:21:00 PM
2-Chlorotoluene	ND	15.4		µg/Kg-dry	1	1/30/2017 7:21:00 PM
2-Hexanone	ND	30.9		µg/Kg-dry	1	1/30/2017 7:21:00 PM
4-Chlorotoluene	ND	15.4		µg/Kg-dry	1	1/30/2017 7:21:00 PM
4-Isopropyltoluene	ND	15.4		µg/Kg-dry	1	1/30/2017 7:21:00 PM
4-Methyl-2-pentanone	ND	61.7		µg/Kg-dry	1	1/30/2017 7:21:00 PM
Acetone	ND	154		µg/Kg-dry	1	1/30/2017 7:21:00 PM

Date Reported: 06-F

06-Feb-17

CLIENT: Project: Parametrix

Collection Date: 1/17/2017 8:45:00 AM

 Project:
 Salmonberry -Botts Marsh / 2732925007

 Lab ID:
 1701106-001

Client Sample ID: BM-B-20-1.0

Analyses	Result	RL	Qual Un	its DF	Date Analyzed
VOLATILE ORGANIC COMPOUN	DS BY GC/MS	SW8260B			Analyst: CK
Benzene	ND	15.4	µg/k	(g-dry 1	1/30/2017 7:21:00 PM
Bromobenzene	ND	15.4	μg/k	Kg-dry 1	1/30/2017 7:21:00 PM
Bromochloromethane	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
Bromodichloromethane	ND	15.4	µg/k	(g-dry 1	1/30/2017 7:21:00 PM
Bromoform	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
Bromomethane	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
Carbon Disulfide	ND	15.4	µg/⊧	Kg-dry 1	1/30/2017 7:21:00 PM
Carbon tetrachloride	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
Chlorobenzene	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
Chloroethane	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
Chloroform	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
Chloromethane	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
cis-1,2-Dichloroethene	ND	15.4	µg/⊧	Kg-dry 1	1/30/2017 7:21:00 PM
cis-1,3-Dichloropropene	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
Dibromochloromethane	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
Dibromomethane	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
Dichlorodifluoromethane	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
Ethylbenzene	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
Hexachlorobutadiene	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
Isopropylbenzene	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
m,p-Xylene	ND	30.9	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
Methyl tert-butyl ether	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
Methylene Chloride	ND	77.2	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
Naphthalene	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
n-Butylbenzene	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
n-Propylbenzene	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
o-Xylene	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
sec-Butylbenzene	ND	15.4	µg/k	(g-dry 1	1/30/2017 7:21:00 PM
Styrene	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
tert-Butylbenzene	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
Tetrachloroethene	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
Toluene	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
trans-1,2-Dichloroethene	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
trans-1,3-Dichloropropene	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
Trichloroethene	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
Trichlorofluoromethane	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
Vinyl Chloride	ND	15.4	µg/k	Kg-dry 1	1/30/2017 7:21:00 PM
Surr: 1,2-Dichloroethane-d4	85.9	71.5-124	%RI	EC 1	1/30/2017 7:21:00 PM
Surr: 4-Bromofluorobenzene	94.3	75.7-122	%RI	EC 1	1/30/2017 7:21:00 PM

Specialty An	nalytical			Date	Reported:	0	6-Feb-17
CLIENT:	Parametrix			Colle	ction Date	: 1/17/2	2017 8:45:00 AM
Project:	Salmonberry -Bo	tts Marsh / 2	732925007				
Lab ID:	1701106-001						
Client Sample ID:	BM-B-20-1.0				Matrix	: SOIL	
Analyses		Result	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORGAN	NIC COMPOUNDS E	BY GC/MS	SW8260B				Analyst: CK
Surr: Dibromofluo	romethane	101	64.3-124		%REC	1	1/30/2017 7:21:00 PM
Surr: Toluene-d8		89.2	74.9-120		%REC	1	1/30/2017 7:21:00 PM

Date Reported:

06-Feb-17

CLIENT: Parametrix **Project:** Salmonberry -Botts Marsh / 2732925007 1701106-002 Lab ID: **Client Sample ID:** BM-B-20-8.0

Collection Date: 1/17/2017 8:50:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX	٩	WTPH-DX				Analyst: JRC
Diesel	ND	22.4		mg/Kg-dry	1	2/1/2017 1:27:00 PM
Lube Oil	ND	74.6		mg/Kg-dry	1	2/1/2017 1:27:00 PM
Surr: o-Terphenyl	74.9	50-150		%REC	1	2/1/2017 1:27:00 PM

Date Reported:

Collection Date: 1/17/2017 9:55:00 AM

06-Feb-17

CLIENT: Project:

otris P

Parametrix
Salmonberry -Botts Marsh / 2732925007

Lab ID: 1701106-003

Client Sample ID: BM-B-19-1.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX		NWTPH-DX				Analyst: JRC
Diesel	ND	19.7		mg/Kg-dry	1	1/25/2017 10:44:00 PM
Lube Oil	ND	65.8		mg/Kg-dry	1	1/25/2017 10:44:00 PM
Surr: o-Terphenyl	76.9	50-150		%REC	1	1/25/2017 10:44:00 PM
ICP/MS METALS-TOTAL REC	OVERABLE	SW6020A				Analyst: EFH
Arsenic	2810	1080		µg/Kg	10	1/25/2017 12:48:56 PM
Barium	88400	541		µg/Kg	10	1/25/2017 12:48:56 PM
Cadmium	123	108		µg/Kg	10	1/25/2017 12:48:56 PM
Chromium	28000	1080		µg/Kg	10	1/25/2017 12:48:56 PM
Lead	2820	271		µg/Kg	10	1/25/2017 12:48:56 PM
Selenium	ND	1080		µg/Kg	10	1/25/2017 12:48:56 PM
Silver	180	108		µg/Kg	10	1/25/2017 12:48:56 PM
TOTAL MERCURY		SW 7471B				Analyst: MIS
Mercury	0.0258	0.0166		mg/Kg	1	1/27/2017 8:34:16 AM

Date Reported:

06-Feb-17

CLIENT: Parametrix **Project:** Salmonberry -Botts Marsh / 2732925007 1701106-004 Lab ID: **Client Sample ID:** BM-B-19-7.0

Collection Date: 1/17/2017 10:00:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX	1	WTPH-DX				Analyst: JRC
Diesel	ND	18.9		mg/Kg-dry	1	2/1/2017 1:49:00 PM
Lube Oil	ND	63.0		mg/Kg-dry	1	2/1/2017 1:49:00 PM
Surr: o-Terphenyl	75.3	50-150		%REC	1	2/1/2017 1:49:00 PM

Date Reported:

Collection Date: 1/17/2017 10:15:00 AM

06-Feb-17

CLIENT: Parametrix **Project:** Salmonberry -Botts Marsh / 2732925007

1701106-005 Lab ID: **Client Sample ID:** BM-B-17-1.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX	٩	WTPH-DX				Analyst: JRC
Diesel	ND	18.4		mg/Kg-dry	1	1/25/2017 11:05:00 PM
Lube Oil	ND	61.2		mg/Kg-dry	1	1/25/2017 11:05:00 PM
Surr: o-Terphenyl	79.0	50-150		%REC	1	1/25/2017 11:05:00 PM

Specialty Analytical				Date	Reported:	0	6-Feb-17		
CLIENT:	Parametrix			Collec	tion Date	: 1/17/2	2017 10:20:00 AM		
Project:	Salmonberry -Bo	tts Marsh / 273	2925007						
Lab ID:	1701106-006								
Client Sample ID:	BM-B-17-4.0			Matrix: SOIL					
Analyses		Result	RL	Qual	Units	DF	Date Analyzed		
HOLD PER CLIENT REQUEST		F	PER CLIENT				Analyst: knb		
Hold		Hold	0			1	2/6/2017 11:22:16 AM		

Date Reported:

06-Feb-17

CLIENT: Parametrix **Project:** Salmonberry -Botts Marsh / 2732925007 1701106-007 Lab ID: **Client Sample ID:** BM-B-18-1.0

Collection Date: 1/17/2017 10:30:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX	1	NWTPH-DX				Analyst: JRC
Diesel	ND	17.3		mg/Kg-dry	1	1/27/2017 12:29:00 AM
Lube Oil	ND	57.6		mg/Kg-dry	1	1/27/2017 12:29:00 AM
Surr: o-Terphenyl	78.7	50-150		%REC	1	1/27/2017 12:29:00 AM

Specialty Analytical					Reported:	0	6-Feb-17		
CLIENT:	Parametrix			Collec	tion Date	: 1/17/2	2017 10:40:00 AM		
Project:	Salmonberry -Bott	s Marsh / 273	2925007						
Lab ID:	1701106-008								
Client Sample ID:	BM-B-18-4.0			Matrix: SOIL					
Analyses		Result	RL	Qual	Units	DF	Date Analyzed		
HOLD PER CLIENT REQUEST			PER CLIENT				Analyst: knb		
Hold		Hold	0			1	2/6/2017 11:22:16 AM		

Date Reported:

06-Feb-17

CLIENT:

Parametrix

Collection Date: 1/17/2017 10:55:00 AM

Project: Salmonberry -Botts Marsh / 2732925007 Lab ID: 1701106-009

Client Sample ID: BM-B-16-1.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX		NWTPH-DX				Analyst: JRC
Diesel	ND	20.0		mg/Kg-dry	1	1/25/2017 11:27:00 PM
Lube Oil	ND	66.5		mg/Kg-dry	1	1/25/2017 11:27:00 PM
Surr: o-Terphenyl	78.8	50-150		%REC	1	1/25/2017 11:27:00 PM
VOLATILE ORGANIC COMPOUN	DS BY GC/MS	SW8260B				Analyst: CK
1,1,1,2-Tetrachloroethane	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
1,1,1-Trichloroethane	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
1,1,2,2-Tetrachloroethane	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
1,1,2-Trichloroethane	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
1,1-Dichloroethane	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
1,1-Dichloroethene	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
1,1-Dichloropropene	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
1,2,3-Trichlorobenzene	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
1,2,3-Trichloropropane	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
1,2,4-Trichlorobenzene	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
1,2,4-Trimethylbenzene	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
1,2-Dibromo-3-chloropropane	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
1,2-Dibromoethane	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
1,2-Dichlorobenzene	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
1,2-Dichloroethane	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
1,2-Dichloropropane	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
1,3,5-Trimethylbenzene	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
1,3-Dichlorobenzene	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
1,3-Dichloropropane	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
1,4-Dichlorobenzene	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
2,2-Dichloropropane	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
2-Butanone	ND	66.4		µg/Kg-dry	1	1/30/2017 7:54:00 PM
2-Chlorotoluene	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
2-Hexanone	ND	33.2		µg/Kg-dry	1	1/30/2017 7:54:00 PM
4-Chlorotoluene	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
4-Isopropyltoluene	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
4-Methyl-2-pentanone	ND	66.4		µg/Kg-dry	1	1/30/2017 7:54:00 PM
Acetone	ND	166		µg/Kg-dry	1	1/30/2017 7:54:00 PM
Benzene	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
Bromobenzene	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
Bromochloromethane	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
Bromodichloromethane	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
Bromoform	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM
Bromomethane	ND	16.6		µg/Kg-dry	1	1/30/2017 7:54:00 PM

Date Reported: 06-Feb-17

CLIENT:

Parametrix

Collection Date: 1/17/2017 10:55:00 AM

Project:SalmLab ID:1702

Salmonberry -Botts Marsh / 2732925007 1701106-009

Client Sample ID: BM-B-16-1.0

Analyses	Result	RL	Qual Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	OS BY GC/MS	SW8260B			Analyst: CK
Carbon Disulfide	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
Carbon tetrachloride	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
Chlorobenzene	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
Chloroethane	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
Chloroform	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
Chloromethane	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
cis-1,2-Dichloroethene	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
cis-1,3-Dichloropropene	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
Dibromochloromethane	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
Dibromomethane	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
Dichlorodifluoromethane	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
Ethylbenzene	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
Hexachlorobutadiene	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
Isopropylbenzene	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
m,p-Xylene	ND	33.2	µg/Kg-dry	1	1/30/2017 7:54:00 PM
Methyl tert-butyl ether	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
Methylene Chloride	ND	83.1	µg/Kg-dry	1	1/30/2017 7:54:00 PM
Naphthalene	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
n-Butylbenzene	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
n-Propylbenzene	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
o-Xylene	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
sec-Butylbenzene	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
Styrene	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
tert-Butylbenzene	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
Tetrachloroethene	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
Toluene	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
trans-1,2-Dichloroethene	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
trans-1,3-Dichloropropene	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
Trichloroethene	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
Trichlorofluoromethane	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
Vinyl Chloride	ND	16.6	µg/Kg-dry	1	1/30/2017 7:54:00 PM
Surr: 1,2-Dichloroethane-d4	86.7	71.5-124	%REC	1	1/30/2017 7:54:00 PM
Surr: 4-Bromofluorobenzene	106	75.7-122	%REC	1	1/30/2017 7:54:00 PM
Surr: Dibromofluoromethane	100	64.3-124	%REC	1	1/30/2017 7:54:00 PM
Surr: Toluene-d8	90.0	74.9-120	%REC	1	1/30/2017 7:54:00 PM

Date Reported: 06-Feb-17

CLIENT: Project: Salmonberry -Botts Marsh / 2732925007

Parametrix

Collection Date: 1/17/2017 11:00:00 AM

Lab ID: 1701106-010 **Client Sample ID:** BM-B-16-6.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX		WTPH-DX				Analyst: JRC
Diesel	ND	22.2		mg/Kg-dry	1	2/1/2017 2:11:00 PM
Lube Oil	ND	73.9		mg/Kg-dry	1	2/1/2017 2:11:00 PM
Surr: o-Terphenyl	78.0	50-150		%REC	1	2/1/2017 2:11:00 PM
RCRA_8 ICP/MS METALS-TOTAL	RECOVERABLE	SW6020A				Analyst: EFH
Arsenic	3400	1420		µg/Kg-dry	10	1/30/2017 2:19:53 PM
Barium	32400	710		µg/Kg-dry	10	1/30/2017 2:19:53 PM
Cadmium	ND	142		µg/Kg-dry	10	1/30/2017 2:19:53 PM
Chromium	24700	1420		µg/Kg-dry	10	1/30/2017 2:19:53 PM
Lead	4230	355		µg/Kg-dry	10	1/30/2017 2:19:53 PM
Selenium	ND	1420		µg/Kg-dry	10	1/30/2017 2:19:53 PM
Silver	146	142		µg/Kg-dry	10	1/30/2017 2:19:53 PM
RCRA_8 TOTAL MERCURY		SW 7471B				Analyst: MIS
Mercury	ND	0.0247		mg/Kg-dry	1	1/31/2017 9:13:27 AM

Date Reported:

06-Feb-17

CLIENT: Parametrix **Project:** Salmonberry -Botts Marsh / 2732925007 1701106-011 Lab ID: **Client Sample ID:** BM-B-15-1.0

Collection Date: 1/17/2017 11:10:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX		NWTPH-DX				Analyst: JRC
Diesel	ND	17.8		mg/Kg-dry	1	1/25/2017 11:49:00 PM
Lube Oil	ND	59.5		mg/Kg-dry	1	1/25/2017 11:49:00 PM
Surr: o-Terphenyl	76.7	50-150		%REC	1	1/25/2017 11:49:00 PM

Specialty Analytical				Date	Reported:	0	6-Feb-17
CLIENT:	Parametrix			Collec	tion Date	: 1/17/2	2017 11:15:00 AM
Project:	Salmonberry -Bo	tts Marsh / 273	2925007				
Lab ID:	1701106-012						
Client Sample ID:	BM-B-15-5.5				Matrix	: SOIL	
Analyses		Result	RL	Qual	Units	DF	Date Analyzed
HOLD PER CLIENT REQUEST PER CLIEN			PER CLIENT				Analyst: knb
Hold		Hold	0			1	2/6/2017 11:22:16 AM

Date Reported:

06-Feb-17

CLIENT:

Parametrix

Collection Date: 1/17/2017 12:10:00 PM

Project: Salmonberry -Botts Marsh / 2732925007 Lab ID: 1701106-013

Client Sample ID: BM-B-12-1.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX		NWTPH-DX				Analyst: JRC
Diesel	ND	17.6	A3	mg/Kg-dry	1	1/26/2017 10:40:00 AM
Lube Oil	501	58.7		mg/Kg-dry	1	1/26/2017 10:40:00 AM
Surr: o-Terphenyl	87.2	50-150		%REC	1	1/26/2017 10:40:00 AM
PAH'S BY GC/MS - LOW LEVEL		SW8270D				Analyst: CK
1-Methylnaphthalene	ND	33.3	Q	µg/Kg	10	2/1/2017 3:21:00 PM
2-Methylnaphthalene	ND	33.3	Q	µg/Kg	10	2/1/2017 3:21:00 PM
Acenaphthene	ND	33.3	Q	µg/Kg	10	2/1/2017 3:21:00 PM
Acenaphthylene	ND	33.3	Q	µg/Kg	10	2/1/2017 3:21:00 PM
Anthracene	ND	33.3	Q	µg/Kg	10	2/1/2017 3:21:00 PM
Benz(a)anthracene	33.3	33.3		µg/Kg	10	2/1/2017 3:21:00 PM
Benzo(a)pyrene	40.0	33.3		µg/Kg	10	2/1/2017 3:21:00 PM
Benzo(b)fluoranthene	ND	33.3	Q	µg/Kg	10	2/1/2017 3:21:00 PM
Benzo(g,h,i)perylene	46.7	33.3		µg/Kg	10	2/1/2017 3:21:00 PM
Benzo(k)fluoranthene	ND	33.3	Q	µg/Kg	10	2/1/2017 3:21:00 PM
Chrysene	33.3	33.3		µg/Kg	10	2/1/2017 3:21:00 PM
Dibenz(a,h)anthracene	ND	33.3	Q	µg/Kg	10	2/1/2017 3:21:00 PM
Fluoranthene	46.7	33.3		µg/Kg	10	2/1/2017 3:21:00 PM
Fluorene	ND	33.3	Q	µg/Kg	10	2/1/2017 3:21:00 PM
Indeno(1,2,3-cd)pyrene	33.3	33.3		µg/Kg	10	2/1/2017 3:21:00 PM
Naphthalene	ND	33.3	Q	µg/Kg	10	2/1/2017 3:21:00 PM
Phenanthrene	33.3	33.3		µg/Kg	10	2/1/2017 3:21:00 PM
Pyrene	80.0	33.3		µg/Kg	10	2/1/2017 3:21:00 PM
Surr: 2-Fluorobiphenyl	82.7	42.6-128		%REC	10	2/1/2017 3:21:00 PM
Surr: Nitrobenzene-d5	50.5	21.7-155		%REC	10	2/1/2017 3:21:00 PM
Surr: p-Terphenyl-d14	90.4	44.9-155		%REC	10	2/1/2017 3:21:00 PM

Date Reported:

06-Feb-17

CLIENT: Project:

Parametrix

Salmonberry -Botts Marsh / 2732925007 Lab ID: 1701106-014

Client Sample ID: BM-B-12-5.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX		NWTPH-DX				Analyst: JRC
Diesel	23.5	20.7		mg/Kg-dry	1	2/1/2017 2:54:00 PM
Lube Oil	ND	69.0		mg/Kg-dry	1	2/1/2017 2:54:00 PM
Surr: o-Terphenyl	75.4	50-150		%REC	1	2/1/2017 2:54:00 PM
RCRA_8 ICP/MS METALS-TOTAL RE		E SW6020A				Analyst: EFH
Arsenic	4570	1410		µg/Kg-dry	10	1/30/2017 2:36:45 PM
Barium	90300	703		µg/Kg-dry	10	1/30/2017 2:36:45 PM
Cadmium	ND	141		µg/Kg-dry	10	1/30/2017 2:36:45 PM
Chromium	35300	1410		µg/Kg-dry	10	1/30/2017 2:36:45 PM
Lead	7440	351		µg/Kg-dry	10	1/30/2017 2:36:45 PM
Selenium	ND	1410		µg/Kg-dry	10	1/30/2017 2:36:45 PM
Silver	ND	141		µg/Kg-dry	10	1/30/2017 2:36:45 PM
RCRA 8 TOTAL MERCURY		SW 7471B				Analyst: MIS
Mercury	ND	0.0226		mg/Kg-dry	1	1/31/2017 9:21:27 AM
PAH'S BY GC/MS - LOW LEVEL		SW8270D				Analyst: CK
1-Methylnaphthalene	ND	3.33		µg/Kg	1	2/1/2017 12:25:00 PM
2-Methylnaphthalene	ND	3.33		µg/Kg	1	2/1/2017 12:25:00 PM
Acenaphthene	ND	3.33		µg/Kg	1	2/1/2017 12:25:00 PM
Acenaphthylene	ND	3.33		µg/Kg	1	2/1/2017 12:25:00 PM
Anthracene	ND	3.33		µg/Kg	1	2/1/2017 12:25:00 PM
Benz(a)anthracene	5.33	3.33		µg/Kg	1	2/1/2017 12:25:00 PM
Benzo(a)pyrene	6.00	3.33		µg/Kg	1	2/1/2017 12:25:00 PM
Benzo(b)fluoranthene	4.67	3.33		µg/Kg	1	2/1/2017 12:25:00 PM
Benzo(g,h,i)perylene	6.00	3.33		µg/Kg	1	2/1/2017 12:25:00 PM
Benzo(k)fluoranthene	3.33	3.33		µg/Kg	1	2/1/2017 12:25:00 PM
Chrysene	7.33	3.33		µg/Kg	1	2/1/2017 12:25:00 PM
Dibenz(a,h)anthracene	ND	3.33		µg/Kg	1	2/1/2017 12:25:00 PM
Fluoranthene	8.00	3.33		µg/Kg	1	2/1/2017 12:25:00 PM
Fluorene	ND	3.33		µg/Kg	1	2/1/2017 12:25:00 PM
Indeno(1,2,3-cd)pyrene	4.67	3.33		µg/Kg	1	2/1/2017 12:25:00 PM
Naphthalene	ND	3.33		µg/Kg	1	2/1/2017 12:25:00 PM
Phenanthrene	5.33	3.33		µg/Kg	1	2/1/2017 12:25:00 PM
Pyrene	13.3	3.33		µg/Kg	1	2/1/2017 12:25:00 PM
Surr: 2-Fluorobiphenyl	94.1	42.6-128		%REC	1	2/1/2017 12:25:00 PM
Surr: Nitrobenzene-d5	72.8	21.7-155		%REC	1	2/1/2017 12:25:00 PM
Surr: p-Terphenyl-d14	89.8	44.9-155		%REC	1	2/1/2017 12:25:00 PM

Date Reported:

06-Feb-17

CLIENT:

Project:

Parametrix

Collection Date: 1/17/2017 1:15:00 PM

Salmonberry -Botts Marsh / 2732925007

Lab ID: 1701106-015 **Client Sample ID:** BM-B-14-1.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX		NWTPH-DX				Analyst: JRC
Diesel	ND	16.7		mg/Kg-dry	1	1/26/2017 12:10:00 AM
Lube Oil	ND	55.7		mg/Kg-dry	1	1/26/2017 12:10:00 AM
Surr: o-Terphenyl	79.0	50-150		%REC	1	1/26/2017 12:10:00 AM
SEMI-VOLATILE COMPOUNDS -	ACID FRACTION	SW8270D				Analyst: CK
Pentachlorophenol	ND	500		µg/Kg	1	1/30/2017 6:03:00 PM
Surr: 2,4,6-Tribromophenol	52.2	39.1-119		%REC	1	1/30/2017 6:03:00 PM
Surr: 2-Fluorophenol	47.9	40.7-111		%REC	1	1/30/2017 6:03:00 PM
Surr: Phenol-d6	41.7	37.5-117		%REC	1	1/30/2017 6:03:00 PM

Date Reported:

06-Feb-17

CLIENT: Project:

Lab ID:

Client Sample ID:

Parametrix Salmonberry -Botts Marsh / 2732925007 1701106-016 BM-B-14-5.5

Collection Date: 1/17/2017 1:20:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX	٩	WTPH-DX				Analyst: JRC
Diesel	ND	20.4		mg/Kg-dry	1	2/1/2017 3:16:00 PM
Lube Oil	ND	67.9		mg/Kg-dry	1	2/1/2017 3:16:00 PM
Surr: o-Terphenyl	77.4	50-150		%REC	1	2/1/2017 3:16:00 PM

Date Reported:

06-Feb-17

CLIENT:

Parametrix

Collection Date: 1/17/2017 1:40:00 PM

Project: Salmonberry -Botts Marsh / 2732925007 1701106-017 Lab ID:

Client Sample ID: BM-B-11-1.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX		NWTPH-DX				Analyst: JRC
Diesel	21.1	18.5		mg/Kg-dry	1	1/26/2017 10:20:00 AM
Lube Oil	138	61.7		mg/Kg-dry	1	1/26/2017 10:20:00 AM
Surr: o-Terphenyl	77.9	50-150		%REC	1	1/26/2017 10:20:00 AM
ICP/MS METALS-TOTAL REC	OVERABLE	SW6020A				Analyst: EFH
Arsenic	1130	975		µg/Kg	10	1/25/2017 1:05:47 PM
Barium	55100	487		µg/Kg	10	1/25/2017 1:05:47 PM
Cadmium	99.6	97.5		µg/Kg	10	1/25/2017 1:05:47 PM
Chromium	17100	975		µg/Kg	10	1/25/2017 1:05:47 PM
Lead	4390	244		µg/Kg	10	1/25/2017 1:05:47 PM
Selenium	ND	975		µg/Kg	10	1/25/2017 1:05:47 PM
Silver	192	97.5		µg/Kg	10	1/25/2017 1:05:47 PM
TOTAL MERCURY		SW 7471B				Analyst: MIS
Mercury	ND	0.0165		mg/Kg	1	1/27/2017 8:42:16 AM

Specialty Analytical					Reported:	0	6-Feb-17
CLIENT:	Parametrix			Collec	tion Date	: 1/17/2	2017 1:45:00 PM
Project:	Salmonberry -Bot	ts Marsh / 273	2925007				
Lab ID:	1701106-018						
Client Sample ID:	BM-B-11-6.5				Matrix	: SOIL	
Analyses		Result	RL	Qual	Units	DF	Date Analyzed
HOLD PER CLIEN	T REQUEST	1	PER CLIENT				Analyst: knb
Hold		Hold	0			1	2/6/2017 11:22:16 AM

Client Sample ID:

Date Reported:

Collection Date: 1/17/2017 2:05:00 PM

06-Feb-17

CLIENT: Parametrix **Project:** Salmonberry -Botts Marsh / 2732925007 1701106-019 Lab ID:

BM-B-13-1.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX	М	WTPH-DX				Analyst: JRC
Diesel	ND	17.8	A3	mg/Kg-dry	1	1/27/2017 3:43:00 AM
Lube Oil	267	59.2		mg/Kg-dry	1	1/27/2017 3:43:00 AM
Surr: o-Terphenyl	80.4	50-150		%REC	1	1/27/2017 3:43:00 AM

Date Reported:

06-Feb-17

CLIENT: Parametrix **Project:** Salmonberry -Botts Marsh / 2732925007 1701106-020 Lab ID: **Client Sample ID:** BM-B-13-7.0

Collection Date: 1/17/2017 2:10:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX	Ν	IWTPH-DX				Analyst: JRC
Diesel	54.4	38.9	A1	mg/Kg-dry	1	2/1/2017 3:38:00 PM
Lube Oil	240	130	A2	mg/Kg-dry	1	2/1/2017 3:38:00 PM
Surr: o-Terphenyl	79.1	50-150		%REC	1	2/1/2017 3:38:00 PM

Date Reported:

06-Feb-17

CLIENT:

Parametrix

Collection Date: 1/17/2017 2:30:00 PM

Project: Salmonberry -Botts Marsh / 2732925007 1701106-021 Lab ID:

Client Sample ID: BM-B-10-2.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX		NWTPH-DX				Analyst: JRC
Diesel	19.8	19.4		mg/Kg-dry	1	1/26/2017 10:00:00 AM
Lube Oil	ND	64.8		mg/Kg-dry	1	1/26/2017 10:00:00 AM
Surr: o-Terphenyl	78.4	50-150		%REC	1	1/26/2017 10:00:00 AM
ICP/MS METALS-TOTAL REC	OVERABLE	SW6020A				Analyst: EFH
Arsenic	3370	998		µg/Kg	10	1/25/2017 1:19:51 PM
Barium	174000	4990		µg/Kg	100	1/25/2017 2:11:00 PM
Cadmium	ND	99.8		µg/Kg	10	1/25/2017 1:19:51 PM
Chromium	11100	998		µg/Kg	10	1/25/2017 1:19:51 PM
Lead	6950	249		µg/Kg	10	1/25/2017 1:19:51 PM
Selenium	ND	998		µg/Kg	10	1/25/2017 1:19:51 PM
Silver	127	99.8		µg/Kg	10	1/25/2017 1:19:51 PM
TOTAL MERCURY		SW 7471B				Analyst: MIS
Mercury	0.0204	0.0162		mg/Kg	1	1/27/2017 8:44:16 AM

Date Reported:

06-Feb-17

CLIENT: Parametrix **Project:** Salmonberry -Botts Marsh / 2732925007 1701106-022 Lab ID: **Client Sample ID:** BM-B-10-5.5

Collection Date: 1/17/2017 2:40:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX	٦	WTPH-DX				Analyst: JRC
Diesel	ND	25.8		mg/Kg-dry	1	2/1/2017 3:59:00 PM
Lube Oil	ND	85.9		mg/Kg-dry	1	2/1/2017 3:59:00 PM
Surr: o-Terphenyl	79.5	50-150		%REC	1	2/1/2017 3:59:00 PM

Date Reported:

06-Feb-17

CLIENT: Parametrix **Project:** Salmonberry -Botts Marsh / 2732925007 1701106-023 Lab ID: **Client Sample ID:** BM-B-9-0.5

Collection Date: 1/17/2017 2:45:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX	1	WTPH-DX				Analyst: JRC
Diesel	ND	18.7		mg/Kg-dry	1	1/25/2017 10:22:00 PM
Lube Oil	ND	62.2		mg/Kg-dry	1	1/25/2017 10:22:00 PM
Surr: o-Terphenyl	77.9	50-150		%REC	1	1/25/2017 10:22:00 PM

Specialty Analytical				Date	Reported:	0	6-Feb-17		
CLIENT:	Parametrix				Collection Date: 1/17/2017 2:50:00 PM				
Project:	Salmonberry -Bo	otts Marsh / 273	2925007						
Lab ID:	1701106-024								
Client Sample ID:	BM-B-9-4.0				Matrix	: SOIL			
Analyses		Result	RL	Qual	Units	DF	Date Analyzed		
HOLD PER CLIENT REQUEST PER C		PER CLIENT				Analyst: knb			
Hold		Hold	0			1	2/6/2017 11:22:16 AM		

Date Reported: 06-Feb-17

CLIENT: Project:

Client Sample ID:

Lab ID:

Parametrix Salmonberry -Botts Marsh / 2732925007 1701106-025

BM-B-8-2.0

Collection Date: 1/17/2017 3:00:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX	1	WTPH-DX				Analyst: JRC
Diesel	ND	17.9		mg/Kg-dry	1	1/27/2017 12:50:00 AM
Lube Oil	ND	59.8		mg/Kg-dry	1	1/27/2017 12:50:00 AM
Surr: o-Terphenyl	67.9	50-150		%REC	1	1/27/2017 12:50:00 AM

Specialty Analytical				Date	Reported:	0	6-Feb-17
CLIENT:	Parametrix				tion Date	: 1/17/2	2017 3:10:00 PM
Project:	Salmonberry -Bo	tts Marsh / 273	2925007				
Lab ID:	1701106-026						
Client Sample ID:	BM-B-8-5.5				Matrix	: SOIL	
Analyses		Result	RL	Qual	Units	DF	Date Analyzed
HOLD PER CLIEN	T REQUEST	1	PER CLIENT				Analyst: knb
Hold		Hold	0			1	2/6/2017 11:22:16 AM

Date Reported: 06-Feb-17

CLIENT:

Parametrix

Collection Date: 1/17/2017

Parametri

Project:	Salmonberry -Botts Marsh / 2732925007
Lab ID:	1701106-027
Client Sample ID:	BM-FD-011717-S1

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX		NWTPH-DX				Analyst: JRC
Diesel	ND	18.8	A3	mg/Kg-dry	1	1/26/2017 11:00:00 AM
Lube Oil	783	62.8		mg/Kg-dry	1	1/26/2017 11:00:00 AM
Surr: o-Terphenyl	86.5	50-150		%REC	1	1/26/2017 11:00:00 AM
ICP/MS METALS-TOTAL RECOVER	ABLE	SW6020A				Analyst: EFH
Arsenic	3280	1010		µg/Kg	10	1/25/2017 1:23:13 PM
Barium	57500	506		µg/Kg	10	1/25/2017 1:23:13 PM
Cadmium	ND	101		µg/Kg	10	1/25/2017 1:23:13 PM
Chromium	13800	1010		µg/Kg	10	1/25/2017 1:23:13 PM
Lead	7580	253		µg/Kg	10	1/25/2017 1:23:13 PM
Selenium	ND	1010		µg/Kg	10	1/25/2017 1:23:13 PM
Silver	ND	101		µg/Kg	10	1/25/2017 1:23:13 PM
TOTAL MERCURY		SW 7471B				Analyst: MIS
Mercury	0.0184	0.0164		mg/Kg	1	1/27/2017 8:46:16 AM
PAH'S BY GC/MS - LOW LEVEL		SW8270D				Analyst: CK
1-Methylnaphthalene	ND	167		µg/Kg	10	1/30/2017 9:02:00 PM
2-Methylnaphthalene	ND	167		µg/Kg	10	1/30/2017 9:02:00 PM
Acenaphthene	ND	167		µg/Kg	10	1/30/2017 9:02:00 PM
Acenaphthylene	200	167		µg/Kg	10	1/30/2017 9:02:00 PM
Anthracene	167	167		µg/Kg	10	1/30/2017 9:02:00 PM
Benz(a)anthracene	367	167		µg/Kg	10	1/30/2017 9:02:00 PM
Benzo(a)pyrene	533	167		µg/Kg	10	1/30/2017 9:02:00 PM
Benzo(b)fluoranthene	300	167		µg/Kg	10	1/30/2017 9:02:00 PM
Benzo(g,h,i)perylene	567	167		µg/Kg	10	1/30/2017 9:02:00 PM
Benzo(k)fluoranthene	167	167		µg/Kg	10	1/30/2017 9:02:00 PM
Chrysene	300	167		µg/Kg	10	1/30/2017 9:02:00 PM
Dibenz(a,h)anthracene	ND	167		µg/Kg	10	1/30/2017 9:02:00 PM
Fluoranthene	667	167		µg/Kg	10	1/30/2017 9:02:00 PM
Fluorene	ND	167		µg/Kg	10	1/30/2017 9:02:00 PM
Indeno(1,2,3-cd)pyrene	433	167		µg/Kg	10	1/30/2017 9:02:00 PM
Naphthalene	ND	167		µg/Kg	10	1/30/2017 9:02:00 PM
Phenanthrene	267	167		µg/Kg	10	1/30/2017 9:02:00 PM
Pyrene	1100	167		µg/Kg	10	1/30/2017 9:02:00 PM
Surr: 2-Fluorobiphenyl	50.5	42.6-128		%REC	10	1/30/2017 9:02:00 PM
Surr: Nitrobenzene-d5	80.0	21.7-155		%REC	10	1/30/2017 9:02:00 PM
Surr: p-Terphenyl-d14	84.0	44.9-155		%REC	10	1/30/2017 9:02:00 PM

Date Reported: 06-Feb-17

CLIENT: Project:

Lab ID:

Parametrix

Collection Date: 1/17/2017

Salmonberry -Botts Marsh / 2732925007 1701106-027

Client Sample ID: BM-FD-011717-S1

Analyses	Result	RL	Qual Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS	SW8260B			Analyst: CK
1,1,1,2-Tetrachloroethane	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
1,1,1-Trichloroethane	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
1,1,2,2-Tetrachloroethane	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
1,1,2-Trichloroethane	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
1,1-Dichloroethane	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
1,1-Dichloroethene	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
1,1-Dichloropropene	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
1,2,3-Trichlorobenzene	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
1,2,3-Trichloropropane	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
1,2,4-Trichlorobenzene	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
1,2,4-Trimethylbenzene	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
1,2-Dibromo-3-chloropropane	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
1,2-Dibromoethane	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
1,2-Dichlorobenzene	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
1,2-Dichloroethane	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
1,2-Dichloropropane	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
1,3,5-Trimethylbenzene	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
1,3-Dichlorobenzene	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
1,3-Dichloropropane	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
1,4-Dichlorobenzene	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
2,2-Dichloropropane	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
2-Butanone	ND	60.4	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
2-Chlorotoluene	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
2-Hexanone	ND	30.2	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
4-Chlorotoluene	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
4-Isopropyltoluene	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
4-Methyl-2-pentanone	ND	60.4	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
Acetone	ND	151	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
Benzene	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
Bromobenzene	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
Bromochloromethane	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
Bromodichloromethane	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
Bromoform	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
Bromomethane	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
Carbon Disulfide	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
Carbon tetrachloride	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
Chlorobenzene	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
Chloroethane	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM
Chloroform	ND	15.1	µg/Kg-d	ry 1	1/30/2017 8:27:00 PM

Date Reported: 06-Feb-17

CLIENT: Project:

Lab ID:

Parametrix

Collection Date: 1/17/2017

Salmonberry -Botts Marsh / 2732925007 1701106-027 **Client Sample ID:** BM-FD-011717-S1

Analyses	Result	RL	Qual U	nits DF	Date Analyzed
VOLATILE ORGANIC COMPOUNE	OS BY GC/MS	SW8260B			Analyst: CK
Chloromethane	ND	15.1	μg	'Kg-dry 1	1/30/2017 8:27:00 PM
cis-1,2-Dichloroethene	ND	15.1	μg	'Kg-dry 1	1/30/2017 8:27:00 PM
cis-1,3-Dichloropropene	ND	15.1	μg	'Kg-dry 1	1/30/2017 8:27:00 PM
Dibromochloromethane	ND	15.1	μg	′Kg-dry 1	1/30/2017 8:27:00 PM
Dibromomethane	ND	15.1	μg	'Kg-dry 1	1/30/2017 8:27:00 PM
Dichlorodifluoromethane	ND	15.1	μg	′Kg-dry 1	1/30/2017 8:27:00 PM
Ethylbenzene	ND	15.1	μg	'Kg-dry 1	1/30/2017 8:27:00 PM
Hexachlorobutadiene	ND	15.1	μg	'Kg-dry 1	1/30/2017 8:27:00 PM
Isopropylbenzene	ND	15.1	μg	'Kg-dry 1	1/30/2017 8:27:00 PM
m,p-Xylene	ND	30.2	μg	'Kg-dry 1	1/30/2017 8:27:00 PM
Methyl tert-butyl ether	ND	15.1	μg	'Kg-dry 1	1/30/2017 8:27:00 PM
Methylene Chloride	ND	75.6	μg	'Kg-dry 1	1/30/2017 8:27:00 PM
Naphthalene	ND	15.1	μg	'Kg-dry 1	1/30/2017 8:27:00 PM
n-Butylbenzene	ND	15.1	μg	'Kg-dry 1	1/30/2017 8:27:00 PM
n-Propylbenzene	ND	15.1	μg	'Kg-dry 1	1/30/2017 8:27:00 PM
o-Xylene	ND	15.1	μg	'Kg-dry 1	1/30/2017 8:27:00 PM
sec-Butylbenzene	ND	15.1	μg	'Kg-dry 1	1/30/2017 8:27:00 PM
Styrene	ND	15.1	μg	'Kg-dry 1	1/30/2017 8:27:00 PM
tert-Butylbenzene	ND	15.1	μg	'Kg-dry 1	1/30/2017 8:27:00 PM
Tetrachloroethene	ND	15.1	μg	'Kg-dry 1	1/30/2017 8:27:00 PM
Toluene	ND	15.1	μg	'Kg-dry 1	1/30/2017 8:27:00 PM
trans-1,2-Dichloroethene	ND	15.1	μg	'Kg-dry 1	1/30/2017 8:27:00 PM
trans-1,3-Dichloropropene	ND	15.1	μg	'Kg-dry 1	1/30/2017 8:27:00 PM
Trichloroethene	ND	15.1	μg	'Kg-dry 1	1/30/2017 8:27:00 PM
Trichlorofluoromethane	ND	15.1	μg	'Kg-dry 1	1/30/2017 8:27:00 PM
Vinyl Chloride	ND	15.1	μg	'Kg-dry 1	1/30/2017 8:27:00 PM
Surr: 1,2-Dichloroethane-d4	90.7	71.5-124	%F	REC 1	1/30/2017 8:27:00 PM
Surr: 4-Bromofluorobenzene	96.8	75.7-122	%F	REC 1	1/30/2017 8:27:00 PM
Surr: Dibromofluoromethane	103	64.3-124	%F	REC 1	1/30/2017 8:27:00 PM
Surr: Toluene-d8	91.1	74.9-120	%F	REC 1	1/30/2017 8:27:00 PM

Date Reported: 06-Feb-17

Collection Date: 1/18/2017 9:00:00 AM

CLIENT: Proje

Parametrix

Project:	Salmonberry -Botts Marsh / 2732925007
Lab ID:	1701106-028
Client Sample ID:	BM-B-7-1.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX		NWTPH-DX				Analyst: JRC
Diesel	ND	19.2		mg/Kg-dry	1	1/26/2017 11:03:00 PM
Lube Oil	ND	64.0		mg/Kg-dry	1	1/26/2017 11:03:00 PM
Surr: o-Terphenyl	80.9	50-150		%REC	1	1/26/2017 11:03:00 PM
SEMI-VOLATILE COMPOUNDS -	ACID FRACTIO	N SW8270D				Analyst: CK
Pentachlorophenol	ND	500		µg/Kg	1	1/30/2017 4:51:00 PM
Surr: 2,4,6-Tribromophenol	49.2	39.1-119		%REC	1	1/30/2017 4:51:00 PM
Surr: 2-Fluorophenol	45.8	40.7-111		%REC	1	1/30/2017 4:51:00 PM
Surr: Phenol-d6	59.5	37.5-117		%REC	1	1/30/2017 4:51:00 PM
VOLATILE ORGANIC COMPOUN	SW8260B				Analyst: CK	
1,1,1,2-Tetrachloroethane	ND	15.6		µg/Kg-dry	1	1/30/2017 8:59:00 PM
1,1,1-Trichloroethane	ND	15.6		µg/Kg-dry	1	1/30/2017 8:59:00 PM
1,1,2,2-Tetrachloroethane	ND	15.6		µg/Kg-dry	1	1/30/2017 8:59:00 PM
1,1,2-Trichloroethane	ND	15.6		µg/Kg-dry	1	1/30/2017 8:59:00 PM
1,1-Dichloroethane	ND	15.6		µg/Kg-dry	1	1/30/2017 8:59:00 PM
1,1-Dichloroethene	ND	15.6		µg/Kg-dry	1	1/30/2017 8:59:00 PM
1,1-Dichloropropene	ND	15.6		µg/Kg-dry	1	1/30/2017 8:59:00 PM
1,2,3-Trichlorobenzene	ND	15.6		µg/Kg-dry	1	1/30/2017 8:59:00 PM
1,2,3-Trichloropropane	ND	15.6		µg/Kg-dry	1	1/30/2017 8:59:00 PM
1,2,4-Trichlorobenzene	ND	15.6		µg/Kg-dry	1	1/30/2017 8:59:00 PM
1,2,4-Trimethylbenzene	ND	15.6		µg/Kg-dry	1	1/30/2017 8:59:00 PM
1,2-Dibromo-3-chloropropane	ND	15.6		µg/Kg-dry	1	1/30/2017 8:59:00 PM
1,2-Dibromoethane	ND	15.6		µg/Kg-dry	1	1/30/2017 8:59:00 PM
1,2-Dichlorobenzene	ND	15.6		µg/Kg-dry	1	1/30/2017 8:59:00 PM
1,2-Dichloroethane	ND	15.6		µg/Kg-dry	1	1/30/2017 8:59:00 PM
1,2-Dichloropropane	ND	15.6		µg/Kg-dry	1	1/30/2017 8:59:00 PM
1,3,5-Trimethylbenzene	ND	15.6		µg/Kg-dry	1	1/30/2017 8:59:00 PM
1,3-Dichlorobenzene	ND	15.6		µg/Kg-dry	1	1/30/2017 8:59:00 PM
1,3-Dichloropropane	ND	15.6		µg/Kg-dry	1	1/30/2017 8:59:00 PM
1,4-Dichlorobenzene	ND	15.6		µg/Kg-dry	1	1/30/2017 8:59:00 PM
2,2-Dichloropropane	ND	15.6		µg/Kg-dry	1	1/30/2017 8:59:00 PM
2-Butanone	ND	62.3		µg/Kg-dry	1	1/30/2017 8:59:00 PM
2-Chlorotoluene	ND	15.6		µg/Kg-dry	1	1/30/2017 8:59:00 PM
2-Hexanone	ND	31.2		µg/Kg-dry	1	1/30/2017 8:59:00 PM
4-Chlorotoluene	ND	15.6		µg/Kg-dry	1	1/30/2017 8:59:00 PM
4-Isopropyltoluene	ND	15.6		µg/Kg-dry	1	1/30/2017 8:59:00 PM
4-Methyl-2-pentanone	ND	62.3		µg/Kg-dry	1	1/30/2017 8:59:00 PM
Acetone	ND	156		µg/Kg-dry	1	1/30/2017 8:59:00 PM

Date Reported: 06-F

06-Feb-17

CLIENT: Project: Parametrix

Collection Date: 1/18/2017 9:00:00 AM

Salmonberry -Botts Marsh / 2732925007

 Lab ID:
 1701106-028

 Client Sample ID:
 BM-B-7-1.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed		
VOLATILE ORGANIC COMPOUNE	OS BY GC/MS	SW8260B				Analyst: CK		
Benzene	ND	15.6	μ	ıg/Kg-dry	1	1/30/2017 8:59:00 PM		
Bromobenzene	ND	15.6	h	ig/Kg-dry	1	1/30/2017 8:59:00 PM		
Bromochloromethane	ND	15.6	μ	ıg/Kg-dry	1	1/30/2017 8:59:00 PM		
Bromodichloromethane	ND	15.6	μ	ıg/Kg-dry	1	1/30/2017 8:59:00 PM		
Bromoform	ND	15.6	μ	ıg/Kg-dry	1	1/30/2017 8:59:00 PM		
Bromomethane	ND	15.6	μ	ıg/Kg-dry	1	1/30/2017 8:59:00 PM		
Carbon Disulfide	ND	15.6	μ	ıg/Kg-dry	1	1/30/2017 8:59:00 PM		
Carbon tetrachloride	ND	15.6	μ	ıg/Kg-dry	1	1/30/2017 8:59:00 PM		
Chlorobenzene	ND	15.6	μ	ıg/Kg-dry	1	1/30/2017 8:59:00 PM		
Chloroethane	ND	15.6	μ	ıg/Kg-dry	1	1/30/2017 8:59:00 PM		
Chloroform	ND	15.6	μ	ıg/Kg-dry	1	1/30/2017 8:59:00 PM		
Chloromethane	ND	15.6	μ	ıg/Kg-dry	1	1/30/2017 8:59:00 PM		
cis-1,2-Dichloroethene	ND	15.6	μ	ıg/Kg-dry	1	1/30/2017 8:59:00 PM		
cis-1,3-Dichloropropene	ND	15.6	μ	ıg/Kg-dry	1	1/30/2017 8:59:00 PM		
Dibromochloromethane	ND	15.6	μ	ıg/Kg-dry	1	1/30/2017 8:59:00 PM		
Dibromomethane	ND	15.6	μ	ıg/Kg-dry	1	1/30/2017 8:59:00 PM		
Dichlorodifluoromethane	ND	15.6	μ	ig/Kg-dry	1	1/30/2017 8:59:00 PM		
Ethylbenzene	ND	15.6	μ	ig/Kg-dry	1	1/30/2017 8:59:00 PM		
Hexachlorobutadiene	ND	15.6	μ	ig/Kg-dry	1	1/30/2017 8:59:00 PM		
Isopropylbenzene	ND	15.6	μ	ig/Kg-dry	1	1/30/2017 8:59:00 PM		
m,p-Xylene	ND	31.2	μ	ig/Kg-dry	1	1/30/2017 8:59:00 PM		
Methyl tert-butyl ether	ND	15.6	μ	ıg/Kg-dry	1	1/30/2017 8:59:00 PM		
Methylene Chloride	ND	77.9	μ	ıg/Kg-dry	1	1/30/2017 8:59:00 PM		
Naphthalene	ND	15.6	μ	ıg/Kg-dry	1	1/30/2017 8:59:00 PM		
n-Butylbenzene	ND	15.6	μ	ıg/Kg-dry	1	1/30/2017 8:59:00 PM		
n-Propylbenzene	ND	15.6	μ	ıg/Kg-dry	1	1/30/2017 8:59:00 PM		
o-Xylene	ND	15.6	μ	ıg/Kg-dry	1	1/30/2017 8:59:00 PM		
sec-Butylbenzene	ND	15.6	μ	ıg/Kg-dry	1	1/30/2017 8:59:00 PM		
Styrene	ND	15.6	μ	ıg/Kg-dry	1	1/30/2017 8:59:00 PM		
tert-Butylbenzene	ND	15.6	μ	ig/Kg-dry	1	1/30/2017 8:59:00 PM		
Tetrachloroethene	ND	15.6	μ	ig/Kg-dry	1	1/30/2017 8:59:00 PM		
Toluene	ND	15.6	μ	ig/Kg-dry	1	1/30/2017 8:59:00 PM		
trans-1,2-Dichloroethene	ND	15.6	μ	ig/Kg-dry	1	1/30/2017 8:59:00 PM		
trans-1,3-Dichloropropene	ND	15.6	μ	ıg/Kg-dry	1	1/30/2017 8:59:00 PM		
Trichloroethene	ND	15.6	µ	ıg/Kg-dry	1	1/30/2017 8:59:00 PM		
Trichlorofluoromethane	ND	15.6	µ	ig/Kg-dry	1	1/30/2017 8:59:00 PM		
Vinyl Chloride	ND	15.6	µ	ig/Kg-dry	1	1/30/2017 8:59:00 PM		
Surr: 1,2-Dichloroethane-d4	91.0	71.5-124	9	6REC	1	1/30/2017 8:59:00 PM		
Surr: 4-Bromofluorobenzene	97.0	75.7-122	9	6REC	1	1/30/2017 8:59:00 PM		
Specialty Ar	Specialty Analytical					0	6-Feb-17	
---	----------------------	----------------	----------	---------------------------------------	--------	--------	----------------------	--
CLIENT:	Parametrix			Collection Date: 1/18/2017 9:00:00 AM				
Project:	Salmonberry -Bo	tts Marsh / 27	32925007					
Lab ID:	1701106-028							
Client Sample ID:	BM-B-7-1.0				Matrix	: SOIL		
Analyses		Result	RL	Qual	Units	DF	Date Analyzed	
VOLATILE ORGAN	NIC COMPOUNDS E	BY GC/MS	SW8260B				Analyst: CK	
Surr: Dibromofluoromethane 105 64.3-124			64.3-124		%REC	1	1/30/2017 8:59:00 PM	

74.9-120

91.6

%REC

1

1/30/2017 8:59:00 PM

Surr: Toluene-d8

Page 35 of 73

Date Reported: 06-Feb-17

CLIENT:

Parametrix

Collection Date: 1/18/2017 9:10:00 AM

Project: Salmonberry -Botts Marsh / 2732925007

Lab ID: 1701106-029

Client Sample ID: BM-B-7-5.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX	1	NWTPH-DX				Analyst: JRC
Diesel	ND	19.2		mg/Kg-dry	1	2/2/2017 12:52:00 PM
Lube Oil	107	64.0		mg/Kg-dry	1	2/2/2017 12:52:00 PM
Surr: o-Terphenyl	78.3	50-150		%REC	1	2/2/2017 12:52:00 PM
RCRA_8 ICP/MS METALS-TOTAL	RECOVERABLE	SW6020A				Analyst: EFH
Arsenic	3460	1160		µg/Kg-dry	10	1/30/2017 4:01:35 PM
Barium	50900	578		µg/Kg-dry	10	1/30/2017 4:01:35 PM
Cadmium	ND	116		µg/Kg-dry	10	1/30/2017 4:01:35 PM
Chromium	23000	1160		µg/Kg-dry	10	1/30/2017 4:01:35 PM
Lead	7400	289		µg/Kg-dry	10	1/30/2017 4:01:35 PM
Selenium	ND	1160		µg/Kg-dry	10	1/30/2017 4:01:35 PM
Silver	140	116		µg/Kg-dry	10	1/30/2017 4:01:35 PM
RCRA_8 TOTAL MERCURY	:	SW 7471B				Analyst: MIS
Mercury	0.0226	0.0213		mg/Kg-dry	1	1/31/2017 9:23:27 AM

Date Reported:

06-Feb-17

CLIENT: Parametrix **Project:** Salmonberry -Botts Marsh / 2732925007 Lab ID:

1701106-030 **Client Sample ID:** BM-B-4-1.0

Collection Date: 1/18/2017 9:30:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX	٩	WTPH-DX				Analyst: JRC
Diesel	ND	20.9		mg/Kg-dry	1	1/27/2017 1:33:00 AM
Lube Oil	ND	69.7		mg/Kg-dry	1	1/27/2017 1:33:00 AM
Surr: o-Terphenyl	77.4	50-150		%REC	1	1/27/2017 1:33:00 AM

Specialty Analytical					Reported:	0	6-Feb-17		
CLIENT:	Parametrix			Collection Date: 1/18/2017 9:40:00 AM					
Project:	Salmonberry -Bo	berry -Botts Marsh / 2732925007							
Lab ID:	1701106-031								
Client Sample ID:	BM-B-4-6.0				Matrix	: SOIL			
Analyses		Result	RL	Qual	Units	DF	Date Analyzed		
HOLD PER CLIENT REQUEST		1	PER CLIENT				Analyst: knb		
Hold		Hold	0			1	2/6/2017 11:22:16 AM		

Date Reported:

06-Feb-17

CLIENT:

Project:

Parametrix

Collection Date: 1/18/2017 9:45:00 AM

Salmonberry -Botts Marsh / 2732925007

1701106-032 Lab ID:

Client Sample ID: BM-B-3-1.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX		NWTPH-DX				Analyst: JRC
Diesel	ND	21.0		mg/Kg-dry	1	1/27/2017 1:55:00 AM
Lube Oil	ND	70.0		mg/Kg-dry	1	1/27/2017 1:55:00 AM
Surr: o-Terphenyl	77.4	50-150		%REC	1	1/27/2017 1:55:00 AM
SEMI-VOLATILE COMPOUNDS -	ACID FRACTION	SW8270D				Analyst: CK
Pentachlorophenol	ND	500		µg/Kg	1	1/30/2017 5:39:00 PM
Surr: 2,4,6-Tribromophenol	70.7	39.1-119		%REC	1	1/30/2017 5:39:00 PM
Surr: 2-Fluorophenol	56.5	40.7-111		%REC	1	1/30/2017 5:39:00 PM
Surr: Phenol-d6	71.7	37.5-117		%REC	1	1/30/2017 5:39:00 PM

Specialty Analytical					Reported:	0	6-Feb-17		
CLIENT:	Parametrix			Collec	tion Date	: 1/18/2	2017 9:50:00 AM		
Project:	Salmonberry -Bot	Botts Marsh / 2732925007							
Lab ID:	1701106-033								
Client Sample ID:	BM-B-3-5.5				Matrix	: SOIL			
Analyses		Result	RL	Qual	Units	DF	Date Analyzed		
HOLD PER CLIENT REQUEST		PER CLIENT				Analyst: knb			
Hold		Hold	0			1	2/6/2017 11:22:16 AM		

Date Reported:

06-Feb-17

CLIENT: Project:

Pa

Parametrix
Salmonberry -Botts Marsh / 2732925007

Collection Date: 1/18/2017 9:55:00 AM

1701106-034 Lab ID:

Client Sample ID: BM-B-1-1.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX		NWTPH-DX				Analyst: JRC
Diesel	ND	22.3		mg/Kg-dry	1	1/27/2017 2:16:00 AM
Lube Oil	ND	74.2		mg/Kg-dry	1	1/27/2017 2:16:00 AM
Surr: o-Terphenyl	78.0	50-150		%REC	1	1/27/2017 2:16:00 AM
ICP/MS METALS-TOTAL REC	OVERABLE	SW6020A				Analyst: EFH
Arsenic	7340	1040		µg/Kg	10	1/25/2017 1:26:36 PM
Barium	65700	519		µg/Kg	10	1/25/2017 1:26:36 PM
Cadmium	122	104		µg/Kg	10	1/25/2017 1:26:36 PM
Chromium	23500	1040		µg/Kg	10	1/25/2017 1:26:36 PM
Lead	28800	260		µg/Kg	10	1/25/2017 1:26:36 PM
Selenium	ND	1040		µg/Kg	10	1/25/2017 1:26:36 PM
Silver	144	104		µg/Kg	10	1/25/2017 1:26:36 PM
TOTAL MERCURY		SW 7471B				Analyst: MIS
Mercury	0.0506	0.0166		mg/Kg	1	1/27/2017 8:48:16 AM

Date Reported:

06-Feb-17

CLIENT:

Parametrix

Collection Date: 1/18/2017 10:00:00 AM

Project: Salmonberry -Botts Marsh / 2732925007 Lab ID: 1701106-035

Client Sample ID: BM-B-1-5.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX		NWTPH-DX				Analyst: JRC
Diesel	ND	22.2		mg/Kg-dry	1	2/2/2017 1:13:00 PM
Lube Oil	75.9	73.8	A2	mg/Kg-dry	1	2/2/2017 1:13:00 PM
Surr: o-Terphenyl	78.9	50-150		%REC	1	2/2/2017 1:13:00 PM
PAH'S BY GC/MS - LOW LEVEL	SW8270D					Analyst: CK
1-Methylnaphthalene	ND	3.33		µg/Kg	1	2/1/2017 2:56:00 PM
2-Methylnaphthalene	ND	3.33		µg/Kg	1	2/1/2017 2:56:00 PM
Acenaphthene	ND	3.33		µg/Kg	1	2/1/2017 2:56:00 PM
Acenaphthylene	ND	3.33		µg/Kg	1	2/1/2017 2:56:00 PM
Anthracene	ND	3.33		µg/Kg	1	2/1/2017 2:56:00 PM
Benz(a)anthracene	ND	3.33		µg/Kg	1	2/1/2017 2:56:00 PM
Benzo(a)pyrene	ND	3.33		µg/Kg	1	2/1/2017 2:56:00 PM
Benzo(b)fluoranthene	ND	3.33		µg/Kg	1	2/1/2017 2:56:00 PM
Benzo(g,h,i)perylene	ND	3.33		µg/Kg	1	2/1/2017 2:56:00 PM
Benzo(k)fluoranthene	ND	3.33		µg/Kg	1	2/1/2017 2:56:00 PM
Chrysene	ND	3.33		µg/Kg	1	2/1/2017 2:56:00 PM
Dibenz(a,h)anthracene	ND	3.33		µg/Kg	1	2/1/2017 2:56:00 PM
Fluoranthene	ND	3.33		µg/Kg	1	2/1/2017 2:56:00 PM
Fluorene	ND	3.33		µg/Kg	1	2/1/2017 2:56:00 PM
Indeno(1,2,3-cd)pyrene	ND	3.33		µg/Kg	1	2/1/2017 2:56:00 PM
Naphthalene	ND	3.33		µg/Kg	1	2/1/2017 2:56:00 PM
Phenanthrene	ND	3.33		µg/Kg	1	2/1/2017 2:56:00 PM
Pyrene	3.33	3.33		µg/Kg	1	2/1/2017 2:56:00 PM
Surr: 2-Fluorobiphenyl	88.9	42.6-128		%REC	1	2/1/2017 2:56:00 PM
Surr: Nitrobenzene-d5	76.7	21.7-155		%REC	1	2/1/2017 2:56:00 PM
Surr: p-Terphenyl-d14	92.5	44.9-155		%REC	1	2/1/2017 2:56:00 PM

Date Reported: 06-Feb-17

CLIENT: Project:

Client Sample ID:

Lab ID:

Parametrix Salmonberry -Botts Marsh / 2732925007

1701106-036

BM-B-2-1.0

Collection Date: 1/18/2017 10:20:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX	1	WTPH-DX				Analyst: JRC
Diesel	ND	20.6		mg/Kg-dry	1	1/26/2017 11:24:00 PM
Lube Oil	ND	68.7		mg/Kg-dry	1	1/26/2017 11:24:00 PM
Surr: o-Terphenyl	76.1	50-150		%REC	1	1/26/2017 11:24:00 PM

Specialty Analytical				Date	Reported:	0	6-Feb-17
CLIENT:	Parametrix			Collec	tion Date	: 1/18/2	2017 10:25:00 AM
Project:	Salmonberry -Bo	tts Marsh / 273	2925007				
Lab ID:	1701106-037						
Client Sample ID:	BM-B-2-7.5				Matrix	: SOIL	
Analyses		Result	RL	Qual	Units	DF	Date Analyzed
HOLD PER CLIENT REQUEST PER CLIEN		PER CLIENT				Analyst: knb	
Hold		Hold	0			1	2/6/2017 11:22:16 AM

Date Reported:

06-Feb-17

CLIENT:

Parametrix

Collection Date: 1/18/2017 11:00:00 AM

Project: Salmonberry -Botts Marsh / 2732925007

Lab ID: 1701106-038 **Client Sample ID:** BM-B-6-1.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX	1	NWTPH-DX				Analyst: JRC
Diesel	ND	17.9		mg/Kg-dry	1	1/27/2017 2:59:00 AM
Lube Oil	ND	59.7		mg/Kg-dry	1	1/27/2017 2:59:00 AM
Surr: o-Terphenyl	78.9	50-150		%REC	1	1/27/2017 2:59:00 AM
RCRA_8 ICP/MS METALS-TOTAL	RECOVERABLE	SW6020A				Analyst: EFH
Arsenic	1550	1020		µg/Kg	10	1/30/2017 4:04:57 PM
Barium	165000	5080		µg/Kg	100	1/31/2017 11:43:00 AM
Cadmium	138	102		µg/Kg	10	1/30/2017 4:04:57 PM
Chromium	31400	1020		µg/Kg	10	1/30/2017 4:04:57 PM
Lead	12100	254		µg/Kg	10	1/30/2017 4:04:57 PM
Selenium	ND	1020		µg/Kg	10	1/30/2017 4:04:57 PM
Silver	181	102		µg/Kg	10	1/30/2017 4:04:57 PM
RCRA_8 TOTAL MERCURY	:	SW 7471B				Analyst: MIS
Mercury	0.0258	0.0164		mg/Kg	1	- 1/31/2017 9:25:27 AM

Specialty Analytical			Date	Reported:	0	6-Feb-17	
CLIENT:	Parametrix			Collec	tion Date	: 1/18/2	2017 11:10:00 AM
Project:	Salmonberry -Bo	otts Marsh / 273	2925007				
Lab ID:	1701106-039						
Client Sample ID:	BM-B-6-6.0				Matrix	: SOIL	
Analyses		Result	RL	Qual	Units	DF	Date Analyzed
HOLD PER CLIEN	T REQUEST	1	PER CLIENT				Analyst: knb
Hold		Hold	0			1	2/6/2017 11:22:16 AM

Date Reported:

06-Feb-17

CLIENT: Project:

Parametrix

Collection Date:	1/18/2017	11:15:00 AM
-------------------------	-----------	-------------

Salmonberry -Botts Marsh / 2732925007

Lab ID: 1701106-040

Client Sample ID: BM-B-5-1.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX		NWTPH-DX				Analyst: JRC
Diesel	ND	23.0		mg/Kg-dry	1	1/26/2017 11:46:00 PM
Lube Oil	ND	76.6		mg/Kg-dry	1	1/26/2017 11:46:00 PM
Surr: o-Terphenyl	74.3	50-150		%REC	1	1/26/2017 11:46:00 PM
ICP/MS METALS-TOTAL RECOVE	RABLE	SW6020A				Analyst: EFH
Arsenic	3460	972		µg/Kg	10	1/25/2017 1:29:58 PM
Barium	96500	486		µg/Kg	10	1/25/2017 1:29:58 PM
Cadmium	102	97.2		µg/Kg	10	1/25/2017 1:29:58 PM
Chromium	13800	972		µg/Kg	10	1/25/2017 1:29:58 PM
Lead	6830	243		µg/Kg	10	1/25/2017 1:29:58 PM
Selenium	ND	972		µg/Kg	10	1/25/2017 1:29:58 PM
Silver	101	97.2		µg/Kg	10	1/25/2017 1:29:58 PM
TOTAL MERCURY		SW 7471B				Analyst: MIS
Mercury	0.0289	0.0166		mg/Kg	1	1/27/2017 8:50:16 AM
SEMI-VOLATILE COMPOUNDS -	ACID FRACTIO	N SW8270D				Analyst: CK
Pentachlorophenol	ND	500		µg/Kg	1	1/30/2017 5:15:00 PM
Surr: 2,4,6-Tribromophenol	73.3	39.1-119		%REC	1	1/30/2017 5:15:00 PM
Surr: 2-Fluorophenol	64.9	40.7-111		%REC	1	1/30/2017 5:15:00 PM
Surr: Phenol-d6	72.7	37.5-117		%REC	1	1/30/2017 5:15:00 PM
VOLATILE ORGANIC COMPOUNI	DS BY GC/MS	SW8260B				Analyst: CK
1,1,1,2-Tetrachloroethane	ND	20.6		µg/Kg-dry	1	1/30/2017 9:33:00 PM
1,1,1-Trichloroethane	ND	20.6		µg/Kg-dry	1	1/30/2017 9:33:00 PM
1,1,2,2-Tetrachloroethane	ND	20.6		µg/Kg-dry	1	1/30/2017 9:33:00 PM
1,1,2-Trichloroethane	ND	20.6		µg/Kg-dry	1	1/30/2017 9:33:00 PM
1,1-Dichloroethane	ND	20.6		µg/Kg-dry	1	1/30/2017 9:33:00 PM
1,1-Dichloroethene	ND	20.6		µg/Kg-dry	1	1/30/2017 9:33:00 PM
1,1-Dichloropropene	ND	20.6		µg/Kg-dry	1	1/30/2017 9:33:00 PM
1,2,3-Trichlorobenzene	ND	20.6		µg/Kg-dry	1	1/30/2017 9:33:00 PM
1,2,3-Trichloropropane	ND	20.6		µg/Kg-dry	1	1/30/2017 9:33:00 PM
1,2,4-Trichlorobenzene	ND	20.6		µg/Kg-dry	1	1/30/2017 9:33:00 PM
1,2,4-Trimethylbenzene	ND	20.6		µg/Kg-dry	1	1/30/2017 9:33:00 PM
1,2-Dibromo-3-chloropropane	ND	20.6		µg/Kg-dry	1	1/30/2017 9:33:00 PM
1,2-Dibromoethane	ND	20.6		µg/Kg-dry	1	1/30/2017 9:33:00 PM
1,2-Dichlorobenzene	ND	20.6		µg/Kg-dry	1	1/30/2017 9:33:00 PM
1,2-Dichloroethane	ND	20.6		µg/Kg-dry	1	1/30/2017 9:33:00 PM
1,2-Dichloropropane	ND	20.6		µg/Kg-dry	1	1/30/2017 9:33:00 PM

Date Reported:

06-Feb-17

CLIENT: Project:

Parametrix

Collection Date: 1/18/2017 11:15:00 AM

Salmonberry -Botts Marsh / 2732925007 1701106-040 Lab ID:

Client Sample ID: BM-B-5-1.0

Analyses	Result	RL	Qual Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS	SW8260B			Analyst: CK
1,3,5-Trimethylbenzene	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
1,3-Dichlorobenzene	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
1,3-Dichloropropane	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
1,4-Dichlorobenzene	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
2,2-Dichloropropane	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
2-Butanone	ND	82.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
2-Chlorotoluene	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
2-Hexanone	ND	41.3	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
4-Chlorotoluene	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
4-Isopropyltoluene	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
4-Methyl-2-pentanone	ND	82.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
Acetone	ND	206	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
Benzene	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
Bromobenzene	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
Bromochloromethane	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
Bromodichloromethane	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
Bromoform	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
Bromomethane	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
Carbon Disulfide	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
Carbon tetrachloride	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
Chlorobenzene	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
Chloroethane	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
Chloroform	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
Chloromethane	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
cis-1,2-Dichloroethene	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
cis-1,3-Dichloropropene	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
Dibromochloromethane	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
Dibromomethane	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
Dichlorodifluoromethane	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
Ethylbenzene	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
Hexachlorobutadiene	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
Isopropylbenzene	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
m,p-Xylene	ND	41.3	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
Methyl tert-butyl ether	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
Methylene Chloride	ND	103	μg/Kg-c	ry 1	1/30/2017 9:33:00 PM
Naphthalene	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
n-Butylbenzene	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
n-Propylbenzene	ND	20.6	µg/Kg-c	ry 1	1/30/2017 9:33:00 PM
o-Xvlene	ND	20.6	ua/Ka-c	rv 1	1/30/2017 9:33:00 PM

Date Reported:

06-Feb-17

Collection Date: 1/18/2017 11:15:00 AM

CLIENT:

Parametrix

Project: Lab ID: Salmonberry -Botts Marsh / 2732925007

1701106-040 **Client Sample ID:**

BM-B-5-1.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS	SW8260B				Analyst: CK
sec-Butylbenzene	ND	20.6		µg/Kg-dry	1	1/30/2017 9:33:00 PM
Styrene	ND	20.6		µg/Kg-dry	1	1/30/2017 9:33:00 PM
tert-Butylbenzene	ND	20.6		µg/Kg-dry	1	1/30/2017 9:33:00 PM
Tetrachloroethene	ND	20.6		µg/Kg-dry	1	1/30/2017 9:33:00 PM
Toluene	ND	20.6		µg/Kg-dry	1	1/30/2017 9:33:00 PM
trans-1,2-Dichloroethene	ND	20.6		µg/Kg-dry	1	1/30/2017 9:33:00 PM
trans-1,3-Dichloropropene	ND	20.6		µg/Kg-dry	1	1/30/2017 9:33:00 PM
Trichloroethene	ND	20.6		µg/Kg-dry	1	1/30/2017 9:33:00 PM
Trichlorofluoromethane	ND	20.6		µg/Kg-dry	1	1/30/2017 9:33:00 PM
Vinyl Chloride	ND	20.6		µg/Kg-dry	1	1/30/2017 9:33:00 PM
Surr: 1,2-Dichloroethane-d4	92.5	71.5-124		%REC	1	1/30/2017 9:33:00 PM
Surr: 4-Bromofluorobenzene	98.3	75.7-122		%REC	1	1/30/2017 9:33:00 PM
Surr: Dibromofluoromethane	104	64.3-124		%REC	1	1/30/2017 9:33:00 PM
Surr: Toluene-d8	91.4	74.9-120		%REC	1	1/30/2017 9:33:00 PM

Specialty Analytical			Date	Reported:	0	6-Feb-17	
CLIENT:	Parametrix			Collec	tion Date	: 1/18/2	2017 11:20:00 AM
Project:	Salmonberry -Bo	tts Marsh / 273	2925007				
Lab ID:	1701106-041						
Client Sample ID:	BM-B-5-4.0				Matrix	: SOIL	
Analyses		Result	RL	Qual	Units	DF	Date Analyzed
HOLD PER CLIEN	T REQUEST		PER CLIENT				Analyst: knb
Hold		Hold	0			1	2/6/2017 11:22:16 AM

Date Reported: 06-Feb-17

CLIENT:ParametrixProject:Salmonberry -Botts Marsh / 2732925007Lab ID:1701106-042Client Sample ID:BM-FD-011817-S2

Collection Date: 1/18/2017

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX	٩	WTPH-DX				Analyst: JRC
Diesel	ND	18.5		mg/Kg-dry	1	1/27/2017 2:38:00 AM
Lube Oil	ND	61.8		mg/Kg-dry	1	1/27/2017 2:38:00 AM
Surr: o-Terphenyl	80.9	50-150		%REC	1	1/27/2017 2:38:00 AM

Date Reported: 06-Feb-17

CLIENT:

Parametrix

Collection Date: 1/17/2017

 Project:
 Salmonberry -Botts Marsh / 2732925007

 Lab ID:
 1701106-043

Client Sample ID: BM-FD-011717-W

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX - RBC		NWTPH-DX				Analyst: JRC
Diesel	ND	0.0765		mg/L	1	1/25/2017 2:11:00 PM
Lube Oil	ND	0.191		mg/L	1	1/25/2017 2:11:00 PM
Surr: o-Terphenyl	76.9	50-150		%REC	1	1/25/2017 2:11:00 PM
ICP/MS METALS-TOTAL RECOVERA	BLE	SW6020A				Analyst: EFH
Arsenic	0.619	0.100		µg/L	1	1/20/2017 4:31:28 PM
Barium	9.65	1.00		µg/L	1	1/20/2017 4:31:28 PM
Cadmium	ND	0.100		µg/L	1	1/20/2017 4:31:28 PM
Chromium	2.15	0.100		µg/L	1	1/20/2017 4:31:28 PM
Lead	1.70	0.100		µg/L	1	1/20/2017 4:31:28 PM
Selenium	ND	1.00		µg/L	1	1/20/2017 4:31:28 PM
Silver	ND	0.100		µg/L	1	1/20/2017 4:31:28 PM
TOTAL MERCURY		E7470A				Analyst: MIS
Mercury	ND	0.000100		mg/L	1	1/20/2017 10:14:25 AM
PAH'S BY GC/MS - LOW LEVEL		SW8270D				Analyst: CK
1-Methylnaphthalene	ND	0.0471		µg/L	1	1/24/2017 6:22:00 PM
2-Methylnaphthalene	ND	0.0471		µg/L	1	1/24/2017 6:22:00 PM
Acenaphthene	ND	0.0471		µg/L	1	1/24/2017 6:22:00 PM
Acenaphthylene	ND	0.0471		µg/L	1	1/24/2017 6:22:00 PM
Anthracene	ND	0.0471		µg/L	1	1/24/2017 6:22:00 PM
Benz(a)anthracene	ND	0.0471		µg/L	1	1/24/2017 6:22:00 PM
Benzo(a)pyrene	ND	0.0471		µg/L	1	1/24/2017 6:22:00 PM
Benzo(b)fluoranthene	ND	0.0471		µg/L	1	1/24/2017 6:22:00 PM
Benzo(g,h,i)perylene	ND	0.0471		µg/L	1	1/24/2017 6:22:00 PM
Benzo(k)fluoranthene	ND	0.0471		µg/L	1	1/24/2017 6:22:00 PM
Chrysene	ND	0.0471		µg/L	1	1/24/2017 6:22:00 PM
Dibenz(a,h)anthracene	ND	0.0471		µg/L	1	1/24/2017 6:22:00 PM
Fluoranthene	ND	0.0471		µg/L	1	1/24/2017 6:22:00 PM
Fluorene	ND	0.0471		µg/L	1	1/24/2017 6:22:00 PM
Indeno(1,2,3-cd)pyrene	ND	0.0471		µg/L	1	1/24/2017 6:22:00 PM
Naphthalene	ND	0.0471		µg/L	1	1/24/2017 6:22:00 PM
Phenanthrene	ND	0.0471		µg/L	1	1/24/2017 6:22:00 PM
Pyrene	ND	0.0471		µg/L	1	1/24/2017 6:22:00 PM
Surr: 2-Fluorobiphenyl	63.5	18.6-106		%REC	1	1/24/2017 6:22:00 PM
Surr: Nitrobenzene-d5	46.2	17-130		%REC	1	1/24/2017 6:22:00 PM
Surr: Terphenyl-d14	87.7	39.6-131		%REC	1	1/24/2017 6:22:00 PM

Date Reported: 06-Feb-17

CLIENT: Project:

Lab ID:

Parametrix

Collection Date: 1/17/2017

Salmonberry -Botts Marsh / 2732925007 1701106-043

Client Sample ID: BM-FD-011717-W

Analyses	Result	RL	Qual U	Inits	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS	Ś	SW8260B				Analyst: CK
1,1,1,2-Tetrachloroethane	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
1,1,1-Trichloroethane	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
1,1,2,2-Tetrachloroethane	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
1,1,2-Trichloroethane	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
1,1-Dichloroethane	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
1,1-Dichloroethene	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
1,1-Dichloropropene	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
1,2,3-Trichlorobenzene	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
1,2,3-Trichloropropane	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
1,2,4-Trichlorobenzene	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
1,2,4-Trimethylbenzene	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
1,2-Dibromo-3-chloropropane	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
1,2-Dibromoethane	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
1,2-Dichlorobenzene	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
1,2-Dichloroethane	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
1,2-Dichloropropane	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
1,3,5-Trimethylbenzene	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
1,3-Dichlorobenzene	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
1,3-Dichloropropane	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
1,4-Dichlorobenzene	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
2,2-Dichloropropane	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
2-Butanone	ND	10.0	μg	/L	1	1/27/2017 3:55:00 PM
2-Chlorotoluene	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
2-Hexanone	ND	10.0	μg	/L	1	1/27/2017 3:55:00 PM
4-Chlorotoluene	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
4-Isopropyltoluene	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
4-Methyl-2-pentanone	ND	20.0	μg	/L	1	1/27/2017 3:55:00 PM
Acetone	70.9	50.0	μg	/L	1	1/27/2017 3:55:00 PM
Acrylonitrile	ND	5.00	μg	/L	1	1/27/2017 3:55:00 PM
Benzene	ND	0.300	μg	/L	1	1/27/2017 3:55:00 PM
Bromobenzene	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
Bromochloromethane	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
Bromodichloromethane	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
Bromoform	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
Bromomethane	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
Carbon disulfide	ND	2.00	μg	/L	1	1/27/2017 3:55:00 PM
Carbon tetrachloride	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM
Chlorobenzene	ND	1.00	μg	/L	1	1/27/2017 3:55:00 PM

Date Reported: 06-Feb-17

CLIENT: Project:

Lab ID:

Parametrix

Collection Date: 1/17/2017

Salmonberry -Botts Marsh / 2732925007 1701106-043

Client Sample ID: BM-FD-011717-W

Analyses	Result	RL	Qual Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS		SW8260B			Analyst: CK
Chloroethane	ND	1.00	µg/L	1	1/27/2017 3:55:00 PM
Chloroform	ND	1.00	µg/L	1	1/27/2017 3:55:00 PM
Chloromethane	ND	1.00	µg/L	1	1/27/2017 3:55:00 PM
cis-1,2-Dichloroethene	ND	1.00	µg/L	1	1/27/2017 3:55:00 PM
cis-1,3-Dichloropropene	ND	1.00	µg/L	1	1/27/2017 3:55:00 PM
Dibromochloromethane	ND	1.00	µg/L	1	1/27/2017 3:55:00 PM
Dibromomethane	ND	1.00	µg/L	1	1/27/2017 3:55:00 PM
Dichlorodifluoromethane	ND	1.00	µg/L	1	1/27/2017 3:55:00 PM
Ethylbenzene	ND	1.00	µg/L	1	1/27/2017 3:55:00 PM
Hexachlorobutadiene	ND	1.00	µg/L	1	1/27/2017 3:55:00 PM
Isopropylbenzene	ND	1.00	µg/L	1	1/27/2017 3:55:00 PM
m,p-Xylene	ND	2.00	µg/L	1	1/27/2017 3:55:00 PM
Methyl tert-butyl ether	ND	1.00	µg/L	1	1/27/2017 3:55:00 PM
Methylene chloride	ND	20.0	µg/L	1	1/27/2017 3:55:00 PM
Naphthalene	ND	1.00	µg/L	1	1/27/2017 3:55:00 PM
n-Butylbenzene	ND	1.00	µg/L	1	1/27/2017 3:55:00 PM
n-Propylbenzene	ND	1.00	µg/L	1	1/27/2017 3:55:00 PM
o-Xylene	ND	1.00	µg/L	1	1/27/2017 3:55:00 PM
sec-Butylbenzene	ND	1.00	µg/L	1	1/27/2017 3:55:00 PM
Styrene	ND	1.00	µg/L	1	1/27/2017 3:55:00 PM
tert-Butylbenzene	ND	1.00	µg/L	1	1/27/2017 3:55:00 PM
Tetrachloroethene	ND	1.00	µg/L	1	1/27/2017 3:55:00 PM
Toluene	ND	1.00	µg/L	1	1/27/2017 3:55:00 PM
trans-1,2-Dichloroethene	ND	1.00	µg/L	1	1/27/2017 3:55:00 PM
trans-1,3-Dichloropropene	ND	1.00	µg/L	1	1/27/2017 3:55:00 PM
Trichloroethene	ND	1.00	µg/L	1	1/27/2017 3:55:00 PM
Trichlorofluoromethane	ND	1.00	µg/L	1	1/27/2017 3:55:00 PM
Vinyl chloride	ND	1.00	µg/L	1	1/27/2017 3:55:00 PM
Surr: 1,2-Dichloroethane-d4	94.5	75.3-126	%REC	1	1/27/2017 3:55:00 PM
Surr: 4-Bromofluorobenzene	101	78.1-120	%REC	1	1/27/2017 3:55:00 PM
Surr: Dibromofluoromethane	99.3	74.2-122	%REC	1	1/27/2017 3:55:00 PM
Surr: Toluene-d8	94.6	76.2-135	%REC	1	1/27/2017 3:55:00 PM

Date Reported:

06-Feb-17

CLIENT: Project:

Client Sample ID:

Lab ID:

Parametrix Salmonberry -Botts Marsh / 2732925007

1701106-044

BM-B-15-W

Collection Date: 1/17/2017 11:45:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX - RBC	1	WTPH-DX				Analyst: JRC
Diesel	ND	0.0770		mg/L	1	1/25/2017 2:33:00 PM
Lube Oil	ND	0.192		mg/L	1	1/25/2017 2:33:00 PM
Surr: o-Terphenyl	72.6	50-150		%REC	1	1/25/2017 2:33:00 PM

Date Reported: 06-I

06-Feb-17

CLIENT:

Parametrix

Collection Date: 1/17/2017 9:15:00 AM

 Project:
 Salmonberry -Botts Marsh / 2732925007

 Lab ID:
 1701106-045

Client Sample ID: BM-B-20-W

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX - RBC		NWTPH-DX				Analyst: JRC
Diesel	ND	0.0759		mg/L	1	1/25/2017 2:55:00 PM
Lube Oil	ND	0.190		mg/L	1	1/25/2017 2:55:00 PM
Surr: o-Terphenyl	74.0	50-150		%REC	1	1/25/2017 2:55:00 PM
ICP/MS METALS-TOTAL RECOVERA	BLE	SW6020A				Analyst: EFH
Arsenic	0.736	0.100		µg/L	1	1/20/2017 4:34:50 PM
Barium	11.5	1.00		µg/L	1	1/20/2017 4:34:50 PM
Cadmium	ND	0.100		µg/L	1	1/20/2017 4:34:50 PM
Chromium	2.66	0.100		µg/L	1	1/20/2017 4:34:50 PM
Lead	2.26	0.100		µg/L	1	1/20/2017 4:34:50 PM
Selenium	ND	1.00		µg/L	1	1/20/2017 4:34:50 PM
Silver	ND	0.100		µg/L	1	1/20/2017 4:34:50 PM
TOTAL MERCURY		E7470A				Analyst: MIS
Mercury	ND	0.000100		mg/L	1	1/20/2017 10:22:25 AM
PAH'S BY GC/MS - LOW LEVEL		SW8270D				Analyst: CK
1-Methylnaphthalene	ND	0.0468		µg/L	1	1/24/2017 6:47:00 PM
2-Methylnaphthalene	ND	0.0468		µg/L	1	1/24/2017 6:47:00 PM
Acenaphthene	ND	0.0468		µg/L	1	1/24/2017 6:47:00 PM
Acenaphthylene	ND	0.0468		µg/L	1	1/24/2017 6:47:00 PM
Anthracene	ND	0.0468		µg/L	1	1/24/2017 6:47:00 PM
Benz(a)anthracene	ND	0.0468		µg/L	1	1/24/2017 6:47:00 PM
Benzo(a)pyrene	ND	0.0468		µg/L	1	1/24/2017 6:47:00 PM
Benzo(b)fluoranthene	ND	0.0468		µg/L	1	1/24/2017 6:47:00 PM
Benzo(g,h,i)perylene	ND	0.0468		µg/L	1	1/24/2017 6:47:00 PM
Benzo(k)fluoranthene	ND	0.0468		µg/L	1	1/24/2017 6:47:00 PM
Chrysene	ND	0.0468		µg/L	1	1/24/2017 6:47:00 PM
Dibenz(a,h)anthracene	ND	0.0468		µg/L	1	1/24/2017 6:47:00 PM
Fluoranthene	ND	0.0468		µg/L	1	1/24/2017 6:47:00 PM
Fluorene	ND	0.0468		µg/L	1	1/24/2017 6:47:00 PM
Indeno(1,2,3-cd)pyrene	ND	0.0468		µg/L	1	1/24/2017 6:47:00 PM
Naphthalene	ND	0.0468		µg/L	1	1/24/2017 6:47:00 PM
Phenanthrene	ND	0.0468		µg/L	1	1/24/2017 6:47:00 PM
Pyrene	ND	0.0468		µg/L	1	1/24/2017 6:47:00 PM
Surr: 2-Fluorobiphenyl	61.0	18.6-106		%REC	1	1/24/2017 6:47:00 PM
Surr: Nitrobenzene-d5	49.8	17-130		%REC	1	1/24/2017 6:47:00 PM
Surr: Terphenyl-d14	105	39.6-131		%REC	1	1/24/2017 6:47:00 PM

Date Reported:

06-Feb-17

CLIENT: Project:

Parametrix

Collection Date: 1/17/2017 9:15:00 AM Salmonberry -Botts Marsh / 2732925007

Lab ID:

1701106-045

Client Sample ID: BM-B-20-W

Analyses	Result	RL	Qual Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS	S	SW8260B			Analyst: CK
1,1,1,2-Tetrachloroethane	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
1,1,1-Trichloroethane	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
1,1,2,2-Tetrachloroethane	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
1,1,2-Trichloroethane	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
1,1-Dichloroethane	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
1,1-Dichloroethene	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
1,1-Dichloropropene	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
1,2,3-Trichlorobenzene	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
1,2,3-Trichloropropane	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
1,2,4-Trichlorobenzene	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
1,2,4-Trimethylbenzene	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
1,2-Dibromo-3-chloropropane	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
1,2-Dibromoethane	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
1,2-Dichlorobenzene	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
1,2-Dichloroethane	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
1,2-Dichloropropane	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
1,3,5-Trimethylbenzene	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
1,3-Dichlorobenzene	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
1,3-Dichloropropane	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
1,4-Dichlorobenzene	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
2,2-Dichloropropane	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
2-Butanone	ND	10.0	μg/L	1	1/27/2017 4:27:00 PM
2-Chlorotoluene	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
2-Hexanone	ND	10.0	μg/L	1	1/27/2017 4:27:00 PM
4-Chlorotoluene	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
4-Isopropyltoluene	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
4-Methyl-2-pentanone	ND	20.0	μg/L	1	1/27/2017 4:27:00 PM
Acetone	ND	50.0	μg/L	1	1/27/2017 4:27:00 PM
Acrylonitrile	ND	5.00	µg/L	1	1/27/2017 4:27:00 PM
Benzene	ND	0.300	µg/L	1	1/27/2017 4:27:00 PM
Bromobenzene	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
Bromochloromethane	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
Bromodichloromethane	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
Bromoform	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
Bromomethane	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
Carbon disulfide	ND	2.00	µg/L	1	1/27/2017 4:27:00 PM
Carbon tetrachloride	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
Chlorobenzene	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM

Date Reported: 06-I

06-Feb-17

CLIENT: Project: Parametrix

Collection Date: 1/17/2017 9:15:00 AM

 Project:
 Salmonberry -Botts Marsh / 2732925007

 Lab ID:
 1701106-045

Client Sample ID: BM-B-20-W

Analyses	Result	RL	Qual Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS		SW8260B			Analyst: CK
Chloroethane	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
Chloroform	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
Chloromethane	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
cis-1,2-Dichloroethene	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
cis-1,3-Dichloropropene	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
Dibromochloromethane	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
Dibromomethane	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
Dichlorodifluoromethane	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
Ethylbenzene	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
Hexachlorobutadiene	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
Isopropylbenzene	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
m,p-Xylene	ND	2.00	µg/L	1	1/27/2017 4:27:00 PM
Methyl tert-butyl ether	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
Methylene chloride	ND	20.0	µg/L	1	1/27/2017 4:27:00 PM
Naphthalene	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
n-Butylbenzene	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
n-Propylbenzene	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
o-Xylene	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
sec-Butylbenzene	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
Styrene	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
tert-Butylbenzene	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
Tetrachloroethene	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
Toluene	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
trans-1,2-Dichloroethene	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
trans-1,3-Dichloropropene	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
Trichloroethene	ND	1.00	µg/L	1	1/27/2017 4:27:00 PM
Trichlorofluoromethane	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
Vinyl chloride	ND	1.00	μg/L	1	1/27/2017 4:27:00 PM
Surr: 1,2-Dichloroethane-d4	95.3	75.3-126	%REC	1	1/27/2017 4:27:00 PM
Surr: 4-Bromofluorobenzene	101	78.1-120	%REC	1	1/27/2017 4:27:00 PM
Surr: Dibromofluoromethane	101	74.2-122	%REC	1	1/27/2017 4:27:00 PM
Surr: Toluene-d8	87.2	76.2-135	%REC	1	1/27/2017 4:27:00 PM

Date Reported:

06-Feb-17

CLIENT:

Parametrix

Collection Date: 1/17/2017 12:35:00 PM

Project: Salmonberry -Botts Marsh / 2732925007

Lab ID: 1701106-046 **Client Sample ID:**

BM-B-12-W

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX - RBC		NWTPH-DX				Analyst: JRC
Diesel	0.139	0.0761		mg/L	1	1/25/2017 3:38:00 PM
Lube Oil	0.260	0.190		mg/L	1	1/25/2017 3:38:00 PM
Surr: o-Terphenyl	74.7	50-150		%REC	1	1/25/2017 3:38:00 PM
RCRA 8 AQUEOUS ICP/MS METALS	-TOTAL	SW6020A				Analyst: EFH
Arsenic	25.4	0.100		µg/L	1	1/31/2017 4:56:48 PM
Barium	127	10.0		µg/L	10	2/1/2017 12:09:00 PM
Cadmium	0.143	0.100		µg/L	1	1/31/2017 4:56:48 PM
Chromium	15.7	0.100		µg/L	1	1/31/2017 4:56:48 PM
Lead	11.7	0.100		µg/L	1	1/31/2017 4:56:48 PM
Selenium	ND	1.00		µg/L	1	1/31/2017 4:56:48 PM
Silver	0.164	0.100		µg/L	1	1/31/2017 4:56:48 PM
ICP/MS METALS-DISSOLVED RECO	VERABLE	SW6020A				Analyst: EFH
Arsenic	16.1	0.100		µg/L	1	1/31/2017 12:34:04 PM
Barium	83.2	1.00		µg/L	1	1/31/2017 12:34:04 PM
Cadmium	ND	0.100		µg/L	1	1/31/2017 12:34:04 PM
Chromium	0.607	0.100		µg/L	1	1/31/2017 12:34:04 PM
Lead	0.207	0.100		µg/L	1	1/31/2017 12:34:04 PM
Selenium	ND	1.00		µg/L	1	1/31/2017 12:34:04 PM
Silver	ND	0.100		µg/L	1	1/31/2017 12:34:04 PM
RCRA 8 AQUEOUS TOTAL MERCUR	Y	E7470A				Analyst: MIS
Mercury	ND	0.000100		mg/L	1	2/1/2017 9:25:29 AM
MERCURY, DISSOLVED		SW7470A				Analyst: MIS
Mercury	ND	0.000100		mg/L	1	2/1/2017 9:39:29 AM
VOLATILE ORGANICS BY GC/MS		SW8260B				Analyst: CK
1,1,1,2-Tetrachloroethane	ND	1.00		µg/L	1	1/30/2017 9:01:00 AM
1,1,1-Trichloroethane	ND	1.00		µg/L	1	1/30/2017 9:01:00 AM
1,1,2,2-Tetrachloroethane	ND	1.00		µg/L	1	1/30/2017 9:01:00 AM
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.00		µg/L	1	1/30/2017 9:01:00 AM
1,1,2-Trichloroethane	ND	1.00		µg/L	1	1/30/2017 9:01:00 AM
1,1-Dichloroethane	ND	1.00		µg/L	1	1/30/2017 9:01:00 AM
1,1-Dichloroethene	ND	1.00		µg/L	1	1/30/2017 9:01:00 AM
1,1-Dichloropropene	ND	1.00		µg/L	1	1/30/2017 9:01:00 AM
1,2,3-Trichlorobenzene	ND	1.00		µg/L	1	1/30/2017 9:01:00 AM
1,2,3-Trichloropropane	ND	1.00		µg/L	1	1/30/2017 9:01:00 AM
1,2,4-Trichlorobenzene	ND	1.00		µg/L	1	1/30/2017 9:01:00 AM

Date Reported: 06-F

06-Feb-17

CLIENT: Project: Parametrix

Collection Date: 1/17/2017 12:35:00 PM

Salmonberry -Botts Marsh / 2732925007 1701106-046

 Lab ID:
 1701106-046

 Client Sample ID:
 BM-B-12-W

Analyses	Result	RL	Qual Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS	ę	SW8260B			Analyst: CK
1,2,4-Trimethylbenzene	ND	1.00	µg/L	1	1/30/2017 9:01:00 AM
1,2-Dibromo-3-chloropropane	ND	1.00	µg/L	1	1/30/2017 9:01:00 AM
1,2-Dibromoethane	ND	1.00	µg/L	1	1/30/2017 9:01:00 AM
1,2-Dichlorobenzene	ND	1.00	µg/L	1	1/30/2017 9:01:00 AM
1,2-Dichloroethane	ND	1.00	μg/L	1	1/30/2017 9:01:00 AM
1,2-Dichloropropane	ND	1.00	μg/L	1	1/30/2017 9:01:00 AM
1,3,5-Trimethylbenzene	ND	1.00	μg/L	1	1/30/2017 9:01:00 AM
1,3-Dichlorobenzene	ND	1.00	μg/L	1	1/30/2017 9:01:00 AM
1,3-Dichloropropane	ND	1.00	μg/L	1	1/30/2017 9:01:00 AM
1,4-Dichlorobenzene	ND	1.00	μg/L	1	1/30/2017 9:01:00 AM
2,2-Dichloropropane	ND	1.00	μg/L	1	1/30/2017 9:01:00 AM
2-Butanone	ND	10.0	μg/L	1	1/30/2017 9:01:00 AM
2-Chlorotoluene	ND	1.00	µg/L	1	1/30/2017 9:01:00 AM
2-Hexanone	ND	10.0	µg/L	1	1/30/2017 9:01:00 AM
4-Chlorotoluene	ND	1.00	µg/L	1	1/30/2017 9:01:00 AM
4-Isopropyltoluene	ND	1.00	µg/L	1	1/30/2017 9:01:00 AM
4-Methyl-2-pentanone	ND	20.0	µg/L	1	1/30/2017 9:01:00 AM
Acetone	ND	50.0	µg/L	1	1/30/2017 9:01:00 AM
Acrylonitrile	ND	5.00	µg/L	1	1/30/2017 9:01:00 AM
Benzene	ND	0.300	µg/L	1	1/30/2017 9:01:00 AM
Bromobenzene	ND	1.00	µg/L	1	1/30/2017 9:01:00 AM
Bromochloromethane	ND	1.00	µg/L	1	1/30/2017 9:01:00 AM
Bromodichloromethane	ND	1.00	µg/L	1	1/30/2017 9:01:00 AM
Bromoform	ND	1.00	µg/L	1	1/30/2017 9:01:00 AM
Bromomethane	ND	1.00	µg/L	1	1/30/2017 9:01:00 AM
Carbon disulfide	ND	2.00	µg/L	1	1/30/2017 9:01:00 AM
Carbon tetrachloride	ND	1.00	µg/L	1	1/30/2017 9:01:00 AM
Chlorobenzene	ND	1.00	μg/L	1	1/30/2017 9:01:00 AM
Chloroethane	ND	1.00	μg/L	1	1/30/2017 9:01:00 AM
Chloroform	ND	1.00	μg/L	1	1/30/2017 9:01:00 AM
Chloromethane	ND	1.00	µg/L	1	1/30/2017 9:01:00 AM
cis-1,2-Dichloroethene	ND	1.00	μg/L	1	1/30/2017 9:01:00 AM
cis-1,3-Dichloropropene	ND	1.00	µg/L	1	1/30/2017 9:01:00 AM
Dibromochloromethane	ND	1.00	µg/L	1	1/30/2017 9:01:00 AM
Dibromomethane	ND	1.00	µg/L	1	1/30/2017 9:01:00 AM
Dichlorodifluoromethane	ND	1.00	µg/L	1	1/30/2017 9:01:00 AM
Ethylbenzene	ND	1.00	µg/L	1	1/30/2017 9:01:00 AM
Hexachlorobutadiene	ND	1.00	µg/L	1	1/30/2017 9:01:00 AM
Isopropylbenzene	ND	1.00	µg/L	1	1/30/2017 9:01:00 AM

Date Reported: 06-Feb-17

CLIENT:

Parametrix

Collection Date: 1/17/2017 12:35:00 PM

Project: Lab ID:

Salmonberry -Botts Marsh / 2732925007 1701106-046

Client Sample ID: BM-B-12-W

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS	:	SW8260B				Analyst: CK
m,p-Xylene	ND	2.00		µg/L	1	1/30/2017 9:01:00 AM
Methyl tert-butyl ether	ND	1.00		µg/L	1	1/30/2017 9:01:00 AM
Methylene chloride	ND	20.0		µg/L	1	1/30/2017 9:01:00 AM
Naphthalene	ND	1.00		µg/L	1	1/30/2017 9:01:00 AM
n-Butylbenzene	ND	1.00		µg/L	1	1/30/2017 9:01:00 AM
n-Propylbenzene	ND	1.00		µg/L	1	1/30/2017 9:01:00 AM
o-Xylene	ND	1.00		µg/L	1	1/30/2017 9:01:00 AM
sec-Butylbenzene	ND	1.00		µg/L	1	1/30/2017 9:01:00 AM
Styrene	ND	1.00		µg/L	1	1/30/2017 9:01:00 AM
tert-Butylbenzene	ND	1.00		µg/L	1	1/30/2017 9:01:00 AM
Tetrachloroethene	ND	1.00		µg/L	1	1/30/2017 9:01:00 AM
Toluene	ND	1.00		µg/L	1	1/30/2017 9:01:00 AM
trans-1,2-Dichloroethene	ND	1.00		µg/L	1	1/30/2017 9:01:00 AM
trans-1,3-Dichloropropene	ND	1.00		µg/L	1	1/30/2017 9:01:00 AM
Trichloroethene	ND	1.00		µg/L	1	1/30/2017 9:01:00 AM
Trichlorofluoromethane	ND	1.00		µg/L	1	1/30/2017 9:01:00 AM
Vinyl chloride	ND	1.00		µg/L	1	1/30/2017 9:01:00 AM
Surr: 1,2-Dichloroethane-d4	90.4	75.3-126		%REC	1	1/30/2017 9:01:00 AM
Surr: 4-Bromofluorobenzene	103	78.1-120		%REC	1	1/30/2017 9:01:00 AM
Surr: Dibromofluoromethane	86.7	74.2-122		%REC	1	1/30/2017 9:01:00 AM
Surr: Toluene-d8	91.3	76.2-135		%REC	1	1/30/2017 9:01:00 AM

Date Reported:

06-Feb-17

CLIENT:

Parametrix

Collection Date: 1/18/2017 11:50:00 AM

Project: Salmonberry -Botts Marsh / 2732925007 1701106-047

Lab ID:

BM-B-5-W **Client Sample ID:**

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX - RBC		NWTPH-DX				Analyst: JRC
Diesel	0.204	0.0782		mg/L	1	1/25/2017 4:22:00 PM
Lube Oil	1.07	0.196		mg/L	1	1/25/2017 4:22:00 PM
Surr: o-Terphenyl	81.6	50-150		%REC	1	1/25/2017 4:22:00 PM
ICP/MS METALS-TOTAL RECOV	/ERABLE	SW6020A				Analyst: EFH
Arsenic	3.77	0.100		µg/L	1	1/20/2017 4:38:12 PM
Barium	86.4	1.00		µg/L	1	1/20/2017 4:38:12 PM
Cadmium	0.474	0.100		µg/L	1	1/20/2017 4:38:12 PM
Chromium	19.2	0.100		µg/L	1	1/20/2017 4:38:12 PM
Lead	64.6	0.100		µg/L	1	1/20/2017 4:38:12 PM
Selenium	ND	1.00		µg/L	1	1/20/2017 4:38:12 PM
Silver	ND	0.100		µg/L	1	1/20/2017 4:38:12 PM
ICP/MS METALS-DISSOLVED R	ECOVERABLE	SW6020A				Analyst: EFH
Arsenic	2.10	0.100		µg/L	1	1/31/2017 5:00:10 PM
Barium	56.9	1.00		µg/L	1	1/31/2017 5:00:10 PM
Cadmium	0.409	0.100		µg/L	1	1/31/2017 5:00:10 PM
Chromium	5.66	0.100		µg/L	1	1/31/2017 5:00:10 PM
Lead	49.9	0.100		µg/L	1	1/31/2017 5:00:10 PM
Selenium	ND	1.00		µg/L	1	1/31/2017 5:00:10 PM
Silver	ND	0.100		µg/L	1	1/31/2017 5:00:10 PM
TOTAL MERCURY		E7470A				Analyst: MIS
Mercury	ND	0.000100		mg/L	1	1/20/2017 10:24:25 AM
MERCURY, DISSOLVED		SW7470A				Analyst: MIS
Mercury	ND	0.00100		mg/L	1	2/1/2017 9:45:29 AM
PAH'S BY GC/MS - LOW LEVEL		SW8270D				Analyst: CK
1-Methylnaphthalene	ND	0.0472		µg/L	1	1/24/2017 7:12:00 PM
2-Methylnaphthalene	ND	0.0472		µg/L	1	1/24/2017 7:12:00 PM
Acenaphthene	0.0944	0.0472		µg/L	1	1/24/2017 7:12:00 PM
Acenaphthylene	0.227	0.0472		µg/L	1	1/24/2017 7:12:00 PM
Anthracene	0.208	0.0472		µg/L	1	1/24/2017 7:12:00 PM
Benz(a)anthracene	0.359	0.0472		µg/L	1	1/24/2017 7:12:00 PM
Benzo(a)pyrene	0.510	0.0472		µg/L	1	1/24/2017 7:12:00 PM
Benzo(b)fluoranthene	0.500	0.0472		µg/L	1	1/24/2017 7:12:00 PM
Benzo(g,h,i)perylene	0.567	0.0472		µg/L	1	1/24/2017 7:12:00 PM
Benzo(k)fluoranthene	0.0661	0.0472		µg/L	1	1/24/2017 7:12:00 PM
Chrysene	0.406	0.0472		µg/L	1	1/24/2017 7:12:00 PM

Date Reported: 06-F

06-Feb-17

CLIENT:

Parametrix

Project:

Salmonberry -Botts Marsh / 2732925007

 Lab ID:
 1701106-047

 Client Sample ID:
 BM-B-5-W

Matrix: WATER

Collection Date: 1/18/2017 11:50:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
PAH'S BY GC/MS - LOW LEVEL		SW8270D				Analyst: CK
Dibenz(a,h)anthracene	0.151	0.0472		µg/L	1	1/24/2017 7:12:00 PM
Fluoranthene	0.878	0.0472		μg/L	1	1/24/2017 7:12:00 PM
Fluorene	0.236	0.0472		μg/L	1	1/24/2017 7:12:00 PM
Indeno(1,2,3-cd)pyrene	0.368	0.0472		μg/L	1	1/24/2017 7:12:00 PM
Naphthalene	ND	0.0472		µg/L	1	1/24/2017 7:12:00 PM
Phenanthrene	0.434	0.0472		µg/L	1	1/24/2017 7:12:00 PM
Pyrene	1.48	0.0472		µg/L	1	1/24/2017 7:12:00 PM
Surr: 2-Fluorobiphenyl	39.2	18.6-106		%REC	1	1/24/2017 7:12:00 PM
Surr: Nitrobenzene-d5	39.3	17-130		%REC	1	1/24/2017 7:12:00 PM
Surr: Terphenyl-d14	96.5	39.6-131		%REC	1	1/24/2017 7:12:00 PM
VOLATILE ORGANICS BY GC/MS		SW8260B				Analyst: CK
1,1,1,2-Tetrachloroethane	ND	1.00		µg/L	1	1/27/2017 4:59:00 PM
1,1,1-Trichloroethane	ND	1.00		µg/L	1	1/27/2017 4:59:00 PM
1,1,2,2-Tetrachloroethane	ND	1.00		µg/L	1	1/27/2017 4:59:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.00		µg/L	1	1/27/2017 4:59:00 PM
1,1,2-Trichloroethane	ND	1.00		µg/L	1	1/27/2017 4:59:00 PM
1,1-Dichloroethane	ND	1.00		µg/L	1	1/27/2017 4:59:00 PM
1,1-Dichloroethene	ND	1.00		µg/L	1	1/27/2017 4:59:00 PM
1,1-Dichloropropene	ND	1.00		µg/L	1	1/27/2017 4:59:00 PM
1,2,3-Trichlorobenzene	ND	1.00		µg/L	1	1/27/2017 4:59:00 PM
1,2,3-Trichloropropane	ND	1.00		µg/L	1	1/27/2017 4:59:00 PM
1,2,4-Trichlorobenzene	ND	1.00		µg/L	1	1/27/2017 4:59:00 PM
1,2,4-Trimethylbenzene	ND	1.00		µg/L	1	1/27/2017 4:59:00 PM
1,2-Dibromo-3-chloropropane	ND	1.00		µg/L	1	1/27/2017 4:59:00 PM
1,2-Dibromoethane	ND	1.00		µg/L	1	1/27/2017 4:59:00 PM
1,2-Dichlorobenzene	ND	1.00		µg/L	1	1/27/2017 4:59:00 PM
1,2-Dichloroethane	ND	1.00		µg/L	1	1/27/2017 4:59:00 PM
1,2-Dichloropropane	ND	1.00		µg/L	1	1/27/2017 4:59:00 PM
1,3,5-Trimethylbenzene	ND	1.00		µg/L	1	1/27/2017 4:59:00 PM
1,3-Dichlorobenzene	ND	1.00		µg/L	1	1/27/2017 4:59:00 PM
1,3-Dichloropropane	ND	1.00		µg/L	1	1/27/2017 4:59:00 PM
1,4-Dichlorobenzene	ND	1.00		µg/L	1	1/27/2017 4:59:00 PM
2,2-Dichloropropane	ND	1.00		µg/L	1	1/27/2017 4:59:00 PM
2-Butanone	ND	10.0		µg/L	1	1/27/2017 4:59:00 PM
2-Chlorotoluene	ND	1.00		µg/L	1	1/27/2017 4:59:00 PM
2-Hexanone	ND	10.0		µg/L	1	1/27/2017 4:59:00 PM
4-Chlorotoluene	ND	1.00		µg/L	1	1/27/2017 4:59:00 PM
4-Isopropyltoluene	ND	1.00		µg/L	1	1/27/2017 4:59:00 PM

Date Reported: 06-F

06-Feb-17

CLIENT: Project: Parametrix

Collection Date: 1/18/2017 11:50:00 AM

t:

Salmonberry -Botts Marsh / 2732925007

 Lab ID:
 1701106-047

 Client Sample ID:
 BM-B-5-W

Analyses	Result	RL	Qual Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS	ę	SW8260B			Analyst: CK
4-Methyl-2-pentanone	ND	20.0	µg/L	1	1/27/2017 4:59:00 PM
Acetone	ND	50.0	µg/L	1	1/27/2017 4:59:00 PM
Acrylonitrile	ND	5.00	µg/L	1	1/27/2017 4:59:00 PM
Benzene	ND	0.300	µg/L	1	1/27/2017 4:59:00 PM
Bromobenzene	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
Bromochloromethane	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
Bromodichloromethane	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
Bromoform	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
Bromomethane	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
Carbon disulfide	ND	2.00	µg/L	1	1/27/2017 4:59:00 PM
Carbon tetrachloride	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
Chlorobenzene	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
Chloroethane	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
Chloroform	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
Chloromethane	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
cis-1,2-Dichloroethene	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
cis-1,3-Dichloropropene	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
Dibromochloromethane	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
Dibromomethane	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
Dichlorodifluoromethane	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
Ethylbenzene	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
Hexachlorobutadiene	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
Isopropylbenzene	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
m,p-Xylene	ND	2.00	µg/L	1	1/27/2017 4:59:00 PM
Methyl tert-butyl ether	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
Methylene chloride	ND	20.0	µg/L	1	1/27/2017 4:59:00 PM
Naphthalene	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
n-Butylbenzene	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
n-Propylbenzene	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
o-Xylene	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
sec-Butylbenzene	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
Styrene	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
tert-Butylbenzene	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
Tetrachloroethene	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
Toluene	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
trans-1,2-Dichloroethene	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
trans-1,3-Dichloropropene	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM
Trichloroethene	ND	1.00	μg/L	1	1/27/2017 4:59:00 PM
Trichlorofluoromethane	ND	1.00	µg/L	1	1/27/2017 4:59:00 PM

Date Reported:

06-Feb-17

CLIENT:

Parametrix

Collection Date: 1/18/2017 11:50:00 AM

Project: Salmonberry -Botts Marsh / 2732925007 Lab ID: 1701106-047

Client Sample ID: BM-B-5-W

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS		SW8260B				Analyst: CK
Vinyl chloride	ND	1.00		µg/L	1	1/27/2017 4:59:00 PM
Surr: 1,2-Dichloroethane-d4	98.4	75.3-126		%REC	1	1/27/2017 4:59:00 PM
Surr: 4-Bromofluorobenzene	102	78.1-120		%REC	1	1/27/2017 4:59:00 PM
Surr: Dibromofluoromethane	102	74.2-122		%REC	1	1/27/2017 4:59:00 PM
Surr: Toluene-d8	84.8	76.2-135		%REC	1	1/27/2017 4:59:00 PM

Date Reported: 06-F

06-Feb-17

CLIENT:

Parametrix

Project:	Salmonberry -Botts Marsh / 2732925007
Lab ID:	1701106-048
Client Sample ID:	BM-B-7-W

Collection Date: 1/18/2017 12:40:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX - RBC		NWTPH-DX				Analyst: JRC
Diesel	ND	0.0756		mg/L	1	1/25/2017 3:17:00 PM
Lube Oil	ND	0.189		mg/L	1	1/25/2017 3:17:00 PM
Surr: o-Terphenyl	31.4	50-150	SMI	%REC	1	1/25/2017 3:17:00 PM
ICP/MS METALS-TOTAL RECOVER	ABLE	SW6020A				Analyst: EFH
Arsenic	8.96	0.100		µg/L	1	1/20/2017 4:41:35 PM
Barium	199	10.0		µg/L	10	1/23/2017 12:32:10 PM
Cadmium	0.502	0.100		µg/L	1	1/20/2017 4:41:35 PM
Chromium	5.01	0.100		µg/L	1	1/20/2017 4:41:35 PM
Lead	55.8	0.100		µg/L	1	1/20/2017 4:41:35 PM
Selenium	1.24	1.00		μg/L	1	1/20/2017 4:41:35 PM
Silver	0.133	0.100		µg/L	1	1/20/2017 4:41:35 PM
TOTAL MERCURY		E7470A				Analyst: MIS
Mercury	ND	0.000100		mg/L	1	1/20/2017 10:26:25 AM
PAH'S BY GC/MS - LOW LEVEL		SW8270D				Analyst: CK
1-Methylnaphthalene	ND	0.0472		µg/L	1	1/24/2017 7:37:00 PM
2-Methylnaphthalene	ND	0.0472		μg/L	1	1/24/2017 7:37:00 PM
Acenaphthene	ND	0.0472		μg/L	1	1/24/2017 7:37:00 PM
Acenaphthylene	ND	0.0472		μg/L	1	1/24/2017 7:37:00 PM
Anthracene	ND	0.0472		μg/L	1	1/24/2017 7:37:00 PM
Benz(a)anthracene	ND	0.0472		µg/L	1	1/24/2017 7:37:00 PM
Benzo(a)pyrene	ND	0.0472		µg/L	1	1/24/2017 7:37:00 PM
Benzo(b)fluoranthene	ND	0.0472		µg/L	1	1/24/2017 7:37:00 PM
Benzo(g,h,i)perylene	ND	0.0472		µg/L	1	1/24/2017 7:37:00 PM
Benzo(k)fluoranthene	ND	0.0472		µg/L	1	1/24/2017 7:37:00 PM
Chrysene	ND	0.0472		µg/L	1	1/24/2017 7:37:00 PM
Dibenz(a,h)anthracene	ND	0.0472		µg/L	1	1/24/2017 7:37:00 PM
Fluoranthene	ND	0.0472		µg/L	1	1/24/2017 7:37:00 PM
Fluorene	ND	0.0472		µg/L	1	1/24/2017 7:37:00 PM
Indeno(1,2,3-cd)pyrene	ND	0.0472		µg/L	1	1/24/2017 7:37:00 PM
Naphthalene	ND	0.0472		µg/L	1	1/24/2017 7:37:00 PM
Phenanthrene	ND	0.0472		μg/L	1	1/24/2017 7:37:00 PM
Pyrene	ND	0.0472		μg/L	1	1/24/2017 7:37:00 PM
Surr: 2-Fluorobiphenyl	49.1	18.6-106		%REC	1	1/24/2017 7:37:00 PM
Surr: Nitrobenzene-d5	37.2	17-130		%REC	1	1/24/2017 7:37:00 PM
Surr: Terphenyl-d14	92.6	39.6-131		%REC	1	1/24/2017 7:37:00 PM

Date Reported: 06-Feb-17

CLIENT: Project:

Parametrix

Collection Date: 1/18/2017 12:40:00 PM

Salmonberry -Botts Marsh / 2732925007

1701106-048 Lab ID: **Client Sample ID:** BM-B-7-W

Analyses	Result	RL	Qual Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS	Ś	SW8260B			Analyst: CK
1,1,1,2-Tetrachloroethane	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
1,1,1-Trichloroethane	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
1,1,2,2-Tetrachloroethane	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
1,1,2-Trichloroethane	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
1,1-Dichloroethane	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
1,1-Dichloroethene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
1,1-Dichloropropene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
1,2,3-Trichlorobenzene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
1,2,3-Trichloropropane	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
1,2,4-Trichlorobenzene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
1,2,4-Trimethylbenzene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
1,2-Dibromo-3-chloropropane	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
1,2-Dibromoethane	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
1,2-Dichlorobenzene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
1,2-Dichloroethane	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
1,2-Dichloropropane	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
1,3,5-Trimethylbenzene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
1,3-Dichlorobenzene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
1,3-Dichloropropane	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
1,4-Dichlorobenzene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
2,2-Dichloropropane	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
2-Butanone	ND	10.0	µg/L	1	1/27/2017 5:32:00 PM
2-Chlorotoluene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
2-Hexanone	ND	10.0	µg/L	1	1/27/2017 5:32:00 PM
4-Chlorotoluene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
4-Isopropyltoluene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
4-Methyl-2-pentanone	ND	20.0	µg/L	1	1/27/2017 5:32:00 PM
Acetone	ND	50.0	µg/L	1	1/27/2017 5:32:00 PM
Acrylonitrile	ND	5.00	µg/L	1	1/27/2017 5:32:00 PM
Benzene	ND	0.300	µg/L	1	1/27/2017 5:32:00 PM
Bromobenzene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
Bromochloromethane	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
Bromodichloromethane	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
Bromoform	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
Bromomethane	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
Carbon disulfide	ND	2.00	µg/L	1	1/27/2017 5:32:00 PM
Carbon tetrachloride	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
Chlorobenzene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM

Date Reported:

06-Feb-17

CLIENT: Project:

Parametrix

Collection Date: 1/18/2017 12:40:00 PM

Salmonberry -Botts Marsh / 2732925007

1701106-048 Lab ID: BM-B-7-W **Client Sample ID:**

Analyses	Result	RL	Qual Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS	SW8260B				Analyst: CK
Chloroethane	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
Chloroform	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
Chloromethane	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
cis-1,2-Dichloroethene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
cis-1,3-Dichloropropene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
Dibromochloromethane	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
Dibromomethane	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
Dichlorodifluoromethane	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
Ethylbenzene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
Hexachlorobutadiene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
Isopropylbenzene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
m,p-Xylene	ND	2.00	µg/L	1	1/27/2017 5:32:00 PM
Methyl tert-butyl ether	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
Methylene chloride	ND	20.0	µg/L	1	1/27/2017 5:32:00 PM
Naphthalene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
n-Butylbenzene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
n-Propylbenzene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
o-Xylene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
sec-Butylbenzene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
Styrene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
tert-Butylbenzene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
Tetrachloroethene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
Toluene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
trans-1,2-Dichloroethene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
trans-1,3-Dichloropropene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
Trichloroethene	ND	1.00	µg/L	1	1/27/2017 5:32:00 PM
Trichlorofluoromethane	ND	1.00	μg/L	1	1/27/2017 5:32:00 PM
Vinyl chloride	ND	1.00	μg/L	1	1/27/2017 5:32:00 PM
Surr: 1,2-Dichloroethane-d4	98.2	75.3-126	%REC	1	1/27/2017 5:32:00 PM
Surr: 4-Bromofluorobenzene	102	78.1-120	%REC	1	1/27/2017 5:32:00 PM
Surr: Dibromofluoromethane	103	74.2-122	%REC	1	1/27/2017 5:32:00 PM
Surr: Toluene-d8	81.0	76.2-135	%REC	1	1/27/2017 5:32:00 PM

Date Reported: 06-F

06-Feb-17

CLIENT:

Parametrix

Collection Date: 1/18/2017 1:30:00 PM

 Project:
 Salmonberry -Botts Marsh / 2732925007

 Lab ID:
 1701106-049

Client Sample ID: BM-B-1-W

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
NWTPH-DX - RBC		NWTPH-DX				Analyst: JRC
Diesel	ND	0.0755	A3	mg/L	1	1/25/2017 4:00:00 PM
Hydraulic Oil	3.38	0.189		mg/L	1	1/25/2017 4:00:00 PM
Lube Oil	ND	0.189	A3	mg/L	1	1/25/2017 4:00:00 PM
Surr: o-Terphenyl	98.4	50-150		%REC	1	1/25/2017 4:00:00 PM
ICP/MS METALS-TOTAL RECOVERABLE		SW6020A				Analyst: EFH
Arsenic	12.6	0.100		µg/L	1	1/20/2017 4:44:58 PM
Barium	194	10.0		µg/L	10	1/23/2017 12:35:33 PM
Cadmium	ND	0.100		µg/L	1	1/20/2017 4:44:58 PM
Chromium	7.35	0.100		µg/L	1	1/20/2017 4:44:58 PM
Lead	48.1	0.100		µg/L	1	1/20/2017 4:44:58 PM
Selenium	ND	1.00		μg/L	1	1/20/2017 4:44:58 PM
Silver	ND	0.100		µg/L	1	1/20/2017 4:44:58 PM
TOTAL MERCURY		E7470A				Analyst: MIS
Mercury	ND	0.000100		mg/L	1	1/20/2017 10:28:25 AM
PAH'S BY GC/MS - LOW LEVEL		SW8270D				Analyst: CK
1-Methylnaphthalene	ND	0.0474		µg/L	1	1/24/2017 8:02:00 PM
2-Methylnaphthalene	ND	0.0474		µg/L	1	1/24/2017 8:02:00 PM
Acenaphthene	ND	0.0474		µg/L	1	1/24/2017 8:02:00 PM
Acenaphthylene	ND	0.0474		µg/L	1	1/24/2017 8:02:00 PM
Anthracene	ND	0.0474		µg/L	1	1/24/2017 8:02:00 PM
Benz(a)anthracene	ND	0.0474		µg/L	1	1/24/2017 8:02:00 PM
Benzo(a)pyrene	ND	0.0474		µg/L	1	1/24/2017 8:02:00 PM
Benzo(b)fluoranthene	ND	0.0474		µg/L	1	1/24/2017 8:02:00 PM
Benzo(g,h,i)perylene	ND	0.0474		µg/L	1	1/24/2017 8:02:00 PM
Benzo(k)fluoranthene	ND	0.0474		µg/L	1	1/24/2017 8:02:00 PM
Chrysene	ND	0.0474		µg/L	1	1/24/2017 8:02:00 PM
Dibenz(a,h)anthracene	ND	0.0474		µg/L	1	1/24/2017 8:02:00 PM
Fluoranthene	ND	0.0474		µg/L	1	1/24/2017 8:02:00 PM
Fluorene	ND	0.0474		µg/L	1	1/24/2017 8:02:00 PM
Indeno(1,2,3-cd)pyrene	ND	0.0474		µg/L	1	1/24/2017 8:02:00 PM
Naphthalene	ND	0.0474		µg/L	1	1/24/2017 8:02:00 PM
Phenanthrene	ND	0.0474		µg/L	1	1/24/2017 8:02:00 PM
Pyrene	ND	0.0474		µg/L	1	1/24/2017 8:02:00 PM
Surr: 2-Fluorobiphenyl	43.6	18.6-106		%REC	1	1/24/2017 8:02:00 PM
Surr: Nitrobenzene-d5	40.8	17-130		%REC	1	1/24/2017 8:02:00 PM
Surr: Terphenyl-d14	63.5	39.6-131		%REC	1	1/24/2017 8:02:00 PM

Date Reported: 06-I

06-Feb-17

CLIENT:

Parametrix

Collection Date: 1/18/2017 1:30:00 PM

Project: Lab ID:

Client Sample ID:

Salmonberry -Botts Marsh / 2732925007

1701106-049

BM-B-1-W

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS	:	SW8260B				Analyst: CK
1,1,1,2-Tetrachloroethane	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
1,1,1-Trichloroethane	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
1,1,2,2-Tetrachloroethane	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
1,1,2-Trichloroethane	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
1,1-Dichloroethane	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
1,1-Dichloroethene	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
1,1-Dichloropropene	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
1,2,3-Trichlorobenzene	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
1,2,3-Trichloropropane	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
1,2,4-Trichlorobenzene	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
1,2,4-Trimethylbenzene	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
1,2-Dibromo-3-chloropropane	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
1,2-Dibromoethane	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
1,2-Dichlorobenzene	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
1,2-Dichloroethane	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
1,2-Dichloropropane	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
1,3,5-Trimethylbenzene	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
1,3-Dichlorobenzene	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
1,3-Dichloropropane	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
1,4-Dichlorobenzene	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
2,2-Dichloropropane	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
2-Butanone	ND	10.0		µg/L	1	1/27/2017 6:05:00 PM
2-Chlorotoluene	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
2-Hexanone	ND	10.0		µg/L	1	1/27/2017 6:05:00 PM
4-Chlorotoluene	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
4-Isopropyltoluene	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
4-Methyl-2-pentanone	ND	20.0		µg/L	1	1/27/2017 6:05:00 PM
Acetone	ND	50.0		µg/L	1	1/27/2017 6:05:00 PM
Acrylonitrile	ND	5.00		µg/L	1	1/27/2017 6:05:00 PM
Benzene	ND	0.300		µg/L	1	1/27/2017 6:05:00 PM
Bromobenzene	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
Bromochloromethane	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
Bromodichloromethane	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
Bromoform	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
Bromomethane	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
Carbon disulfide	ND	2.00		µg/L	1	1/27/2017 6:05:00 PM
Carbon tetrachloride	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
Chlorobenzene	ND	1.00		µg/L	1	1/27/2017 6:05:00 PM
Specialty Analytical

Date Reported: 06-H

06-Feb-17

CLIENT: Project: Parametrix

Collection Date: 1/18/2017 1:30:00 PM

Salmonberry -Botts Marsh / 2732925007

Lab ID: 1701106-049

Client Sample ID: BM-B-1-W

Matrix: WATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS		SW8260B			Analyst: CK
Chloroethane	ND	1.00	µg/L	1	1/27/2017 6:05:00 PM
Chloroform	ND	1.00	µg/L	1	1/27/2017 6:05:00 PM
Chloromethane	ND	1.00	µg/L	1	1/27/2017 6:05:00 PM
cis-1,2-Dichloroethene	ND	1.00	µg/L	1	1/27/2017 6:05:00 PM
cis-1,3-Dichloropropene	ND	1.00	μg/L	1	1/27/2017 6:05:00 PM
Dibromochloromethane	ND	1.00	μg/L	1	1/27/2017 6:05:00 PM
Dibromomethane	ND	1.00	μg/L	1	1/27/2017 6:05:00 PM
Dichlorodifluoromethane	ND	1.00	μg/L	1	1/27/2017 6:05:00 PM
Ethylbenzene	ND	1.00	μg/L	1	1/27/2017 6:05:00 PM
Hexachlorobutadiene	ND	1.00	μg/L	1	1/27/2017 6:05:00 PM
Isopropylbenzene	ND	1.00	μg/L	1	1/27/2017 6:05:00 PM
m,p-Xylene	ND	2.00	μg/L	1	1/27/2017 6:05:00 PM
Methyl tert-butyl ether	ND	1.00	μg/L	1	1/27/2017 6:05:00 PM
Methylene chloride	ND	20.0	μg/L	1	1/27/2017 6:05:00 PM
Naphthalene	ND	1.00	μg/L	1	1/27/2017 6:05:00 PM
n-Butylbenzene	ND	1.00	μg/L	1	1/27/2017 6:05:00 PM
n-Propylbenzene	ND	1.00	μg/L	1	1/27/2017 6:05:00 PM
o-Xylene	ND	1.00	μg/L	1	1/27/2017 6:05:00 PM
sec-Butylbenzene	ND	1.00	μg/L	1	1/27/2017 6:05:00 PM
Styrene	ND	1.00	μg/L	1	1/27/2017 6:05:00 PM
tert-Butylbenzene	ND	1.00	μg/L	1	1/27/2017 6:05:00 PM
Tetrachloroethene	ND	1.00	μg/L	1	1/27/2017 6:05:00 PM
Toluene	ND	1.00	μg/L	1	1/27/2017 6:05:00 PM
trans-1,2-Dichloroethene	ND	1.00	μg/L	1	1/27/2017 6:05:00 PM
trans-1,3-Dichloropropene	ND	1.00	μg/L	1	1/27/2017 6:05:00 PM
Trichloroethene	ND	1.00	μg/L	1	1/27/2017 6:05:00 PM
Trichlorofluoromethane	ND	1.00	μg/L	1	1/27/2017 6:05:00 PM
Vinyl chloride	ND	1.00	μg/L	1	1/27/2017 6:05:00 PM
Surr: 1,2-Dichloroethane-d4	98.0	75.3-126	%REC	1	1/27/2017 6:05:00 PM
Surr: 4-Bromofluorobenzene	101	78.1-120	%REC	1	1/27/2017 6:05:00 PM
Surr: Dibromofluoromethane	101	74.2-122	%REC	1	1/27/2017 6:05:00 PM
Surr: Toluene-d8	90.7	76.2-135	%REC	1	1/27/2017 6:05:00 PM

Specialty Analytical

Date Reported: 06-Feb-17

CLIENT: Project: Parametrix

1701106-050

Collection Date:

Matrix:

Salmon

Salmonberry -Botts Marsh / 2732925007

Lab ID:

Client Sample ID: Trip Blank

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS	S	SW8260B				Analyst: CK
1,1,1,2-Tetrachloroethane	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
1,1,1-Trichloroethane	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
1,1,2,2-Tetrachloroethane	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
1,1,2-Trichloroethane	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
1,1-Dichloroethane	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
1,1-Dichloroethene	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
1,1-Dichloropropene	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
1,2,3-Trichlorobenzene	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
1,2,3-Trichloropropane	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
1,2,4-Trichlorobenzene	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
1,2,4-Trimethylbenzene	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
1,2-Dibromo-3-chloropropane	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
1,2-Dibromoethane	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
1,2-Dichlorobenzene	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
1,2-Dichloroethane	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
1,2-Dichloropropane	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
1,3,5-Trimethylbenzene	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
1,3-Dichlorobenzene	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
1,3-Dichloropropane	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
1,4-Dichlorobenzene	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
2,2-Dichloropropane	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
2-Butanone	ND	10.0		µg/L	1	1/27/2017 2:19:00 PM
2-Chlorotoluene	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
2-Hexanone	ND	10.0		µg/L	1	1/27/2017 2:19:00 PM
4-Chlorotoluene	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
4-Isopropyltoluene	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
4-Methyl-2-pentanone	ND	20.0		µg/L	1	1/27/2017 2:19:00 PM
Acetone	ND	50.0		µg/L	1	1/27/2017 2:19:00 PM
Acrylonitrile	ND	5.00		µg/L	1	1/27/2017 2:19:00 PM
Benzene	ND	0.300		µg/L	1	1/27/2017 2:19:00 PM
Bromobenzene	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
Bromochloromethane	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
Bromodichloromethane	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
Bromoform	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
Bromomethane	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
Carbon disulfide	ND	2.00		µg/L	1	1/27/2017 2:19:00 PM
Carbon tetrachloride	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM
Chlorobenzene	ND	1.00		µg/L	1	1/27/2017 2:19:00 PM

Specialty Analytical

Date Reported: 06-Feb-17

CLIENT:

Parametrix

Collection Date:

Matrix:

Project: Salmonberry -Botts Marsh / 2732925007 Lab ID:

1701106-050

Trip Blank **Client Sample ID:**

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS	:	SW8260B				Analyst: CK
Chloroethane	ND	1.00	ŀ	ıg/L	1	1/27/2017 2:19:00 PM
Chloroform	ND	1.00	ŀ	ıg/L	1	1/27/2017 2:19:00 PM
Chloromethane	ND	1.00	ł	ıg/L	1	1/27/2017 2:19:00 PM
cis-1,2-Dichloroethene	ND	1.00	ł	ıg/L	1	1/27/2017 2:19:00 PM
cis-1,3-Dichloropropene	ND	1.00	ł	ıg/L	1	1/27/2017 2:19:00 PM
Dibromochloromethane	ND	1.00	ł	ıg/L	1	1/27/2017 2:19:00 PM
Dibromomethane	ND	1.00	ł	ıg/L	1	1/27/2017 2:19:00 PM
Dichlorodifluoromethane	ND	1.00	ł	ıg/L	1	1/27/2017 2:19:00 PM
Ethylbenzene	ND	1.00	ł	ıg/L	1	1/27/2017 2:19:00 PM
Hexachlorobutadiene	ND	1.00	ł	ıg/L	1	1/27/2017 2:19:00 PM
Isopropylbenzene	ND	1.00	ł	ıg/L	1	1/27/2017 2:19:00 PM
m,p-Xylene	ND	2.00	ł	ıg/L	1	1/27/2017 2:19:00 PM
Methyl tert-butyl ether	ND	1.00	ł	ıg/L	1	1/27/2017 2:19:00 PM
Methylene chloride	ND	20.0	ł	ıg/L	1	1/27/2017 2:19:00 PM
Naphthalene	ND	1.00	ł	ıg/L	1	1/27/2017 2:19:00 PM
n-Butylbenzene	ND	1.00	ł	ıg/L	1	1/27/2017 2:19:00 PM
n-Propylbenzene	ND	1.00	ł	ıg/L	1	1/27/2017 2:19:00 PM
o-Xylene	ND	1.00	ł	ıg/L	1	1/27/2017 2:19:00 PM
sec-Butylbenzene	ND	1.00	ł	ıg/L	1	1/27/2017 2:19:00 PM
Styrene	ND	1.00	ł	ıg/L	1	1/27/2017 2:19:00 PM
tert-Butylbenzene	ND	1.00	ł	ıg/L	1	1/27/2017 2:19:00 PM
Tetrachloroethene	ND	1.00	ł	ıg/L	1	1/27/2017 2:19:00 PM
Toluene	ND	1.00	ł	ıg/L	1	1/27/2017 2:19:00 PM
trans-1,2-Dichloroethene	ND	1.00	ł	ıg/L	1	1/27/2017 2:19:00 PM
trans-1,3-Dichloropropene	ND	1.00	ł	ıg/L	1	1/27/2017 2:19:00 PM
Trichloroethene	ND	1.00	ł	ıg/L	1	1/27/2017 2:19:00 PM
Trichlorofluoromethane	ND	1.00	ł	ıg/L	1	1/27/2017 2:19:00 PM
Vinyl chloride	ND	1.00	ł	ıg/L	1	1/27/2017 2:19:00 PM
Surr: 1,2-Dichloroethane-d4	89.3	75.3-126	Ċ	%REC	1	1/27/2017 2:19:00 PM
Surr: 4-Bromofluorobenzene	103	78.1-120	ç	%REC	1	1/27/2017 2:19:00 PM
Surr: Dibromofluoromethane	98.2	74.2-122	ç	%REC	1	1/27/2017 2:19:00 PM
Surr: Toluene-d8	93.2	76.2-135	c	%REC	1	1/27/2017 2:19:00 PM

WO#: **1701106**

06-Feb-17

Client: Project:	Parametrix Salmonberry -Botts Marsh / 27329250	007				TestCode: 6	020_S	
Sample ID: ICV	SampType: ICV	TestCode: 6020_S	Units: µg/Kg		Prep Date:		RunNo: 19836	
Client ID: ICV	Batch ID: 9311	TestNo: SW6020A	SW3050B		Analysis Date: 1/25/2	2017	SeqNo: 265550	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit HighLimi	t RPD Ref Val	%RPD RPDLimit	Qual
Arsenic	4600	100 5000	0	92.1	90 110)		
Barium	4690	50.0 5000	0	93.8	90 110)		
Cadmium	4690	10.0 5000	0	93.8	90 110)		
Chromium	4600	100 5000	0	92.1	90 110)		
Lead	4510	25.0 5000	0	90.2	90 110)		
Selenium	4710	100 5000	0	94.3	90 110)		
Silver	4670	10.0 5000	0	93.3	90 110)		
Sample ID: MB-93	I1 SampType: MBLK	TestCode: 6020_S	Units: µg/Kg		Prep Date: 1/24/2	2017	RunNo: 19836	
Client ID: PBS	Batch ID: 9311	TestNo: SW6020A	SW3050B		Analysis Date: 1/25/2	2017	SeqNo: 265553	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit HighLimi	RPD Ref Val	%RPD RPDLimit	Qual
Arsenic	ND	100						
Barium	ND	50.0						
Cadmium	ND	10.0						
Chromium	ND	100						
Lead	ND	25.0						
Selenium	ND	100						
Silver	ND	10.0						

Specialty Analytical

Qualifiers: B Analyte detected in the associated Method Blank

ded ND Not Detected at the Reporting Limit

S

Page 1 of 69

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

Spike Recovery outside accepted reco

WO#: 1701106

06-Feb-17

Client: Project:	Parametrix Salmonberry	y -Botts Marsh / 273292	5007					Т	estCode: 60	020_S		
Sample ID: L	LCS-9311	SampType: LCS	TestCo	de: 6020_S	Units: µg/Kg		Prep Date	e: 1/24/20	17	RunNo: 198	36	
Client ID: L	LCSS	Batch ID: 9311	Test	lo: SW6020A	SW3050B		Analysis Date	e: 1/25/20	17	SeqNo: 265	555	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		4540	100	5000	0	90.9	73.4	120				
Barium		5190	50.0	5000	0	104	80	120				
Cadmium		4450	10.0	5000	0	89.0	80	120				
Chromium		5630	100	5000	0	113	80	120				
Lead		5150	25.0	5000	0	103	80	120				
Selenium		4540	100	5000	0	90.9	79.5	119				
Silver		4680	10.0	5000	0	93.7	12.3	165				
O mala ID 4			T 10 .	1	1 ha't an ann 11 a'		Dava Data	4/04/00	47	Durables 400		
Sample ID: 1	1701106-003BDUP	SampType: DUP	TestCoo	de: 6020_5	Units: µg/Kg		Prep Date	e: 1/24/20	17	RunNo: 198	36	
Client ID: E	ВМ-В-19-1.0	Batch ID: 9311	Test	lo: SW6020A	SW3050B		Analysis Date	e: 1/25/20	17	SeqNo: 265	561	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		1880	1010						2807	39.7	20	R
Barium		72700	505						88410	19.5	20	
Cadmium		118	101						123.5	4.32	20	
Chromium		29100	1010						28000	3.74	20	
Lead		1950	253						2817	36.2	20	R
Selenium		ND	1010						0	0	20	
Silver		183	101						180.3	1.32	20	

Qualifiers:

Holding times for preparation or analysis exceeded Н

S

ND Not Detected at the Reporting Limit

0 RSD is greater than RSDlimit

Specialty Analytical

R RPD outside accepted recovery limits Spike Recovery outside accepted reco

Page 2 of 69

WO#: 1701106

06-Feb-17

Client: Project:	Parametrix Salmonberr	y -Botts Marsh / 273292	5007					Т	'estCode: 6	020_S		
Sample ID: 1	1701106-003BMS	SampType: MS	TestCo	de: 6020_S	Units: µg/Kg		Prep Dat	e: 1/24/20	17	RunNo: 198	36	
Client ID:	ВМ-В-19-1.0	Batch ID: 9311	Test	lo: SW6020A	SW3050B		Analysis Dat	e: 1/25/20	17	SeqNo: 265	563	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		5880	992	4960	2807	62.0	70	130				SRP
Barium		84700	496	4960	88410	-75.1	70	130				SRP
Cadmium		4980	99.2	4960	123.5	97.8	70	130				
Chromium		35700	992	4960	28000	155	70	130				SRP
Lead		6440	248	4960	2817	72.9	70	130				
Selenium		4400	992	4960	586.8	76.8	70	130				
Silver		4810	99.2	4960	180.3	93.4	70	130				
Sample ID: 1	1701106-003BMSD	SampType: MSD	TestCo	de: 6020_S	Units: µg/Kg		Prep Dat	e: 1/24/20	17	RunNo: 198	36	
Client ID:	BM-B-19-1.0	Batch ID: 9311	Test	lo: SW6020A	SW3050B		Analysis Dat	e: 1/25/20	17	SeqNo: 265	5565	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		5280	965	4823	2807	51.3	70	130	5881	10.7	20	SRP
Barium		48600	482	4823	88410	-825	70	130	84680	54.1	20	SRP
Cadmium		5060	96.5	4823	123.5	102	70	130	4975	1.70	20	
Chromium		26800	965	4823	28000	-24.9	70	130	35700	28.5	20	SRP
Lead		5720	241	4823	2817	60.2	70	130	6435	11.8	20	SRP
Selenium		4780	965	4823	586.8	87.0	70	130	4397	8.39	20	
Silver		4920	96.5	4823	180.3	98.3	70	130	4811	2.20	20	

Specialty Analytical

Qualifiers:

В

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Н

ND Not Detected at the Reporting Limit

RSD is greater than RSDlimit 0

RPD outside accepted recovery limits R

S Spike Recovery outside accepted reco Page 3 of 69

WO#: **1701106**

06-Feb-17

Client: Project:	Parametrix Salmonberry -Botts Marsh / 273292	5007					Т	estCode: 6	020_S		
Sample ID: CCV	SampType: CCV	TestCode: 602	20_S	Units: µg/Kg		Prep Date	e:		RunNo: 198	36	
Client ID: CCV	Batch ID: 9311	TestNo: SW	/6020A	SW3050B		Analysis Dat	e: 1/25/20	17	SeqNo: 265	569	
Analyte	Result	PQL SPK	value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	4700	100	5000	0	94.0	90	110				
Barium	4770	50.0	5000	0	95.4	90	110				
Cadmium	4820	10.0	5000	0	96.5	90	110				
Chromium	4920	100	5000	0	98.5	90	110				
Lead	4580	25.0	5000	0	91.5	90	110				
Selenium	4770	100	5000	0	95.3	90	110				
Silver	5180	10.0	5000	0	104	90	110				
Sample ID: CCV	SampType: CCV	TestCode: 602	20_S	Units: µg/Kg		Prep Dat	e:		RunNo: 198	36	
Client ID: CCV	Batch ID: 9311	TestNo: SW	/6020A	SW3050B		Analysis Dat	e: 1/25/20	17	SeqNo: 265	576	
Analyte	Result	PQL SPK	value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	4750	100	5000	0	94.9	90	110				
Barium	4920	50.0	5000	0	98.3	90	110				
Cadmium	4850	10.0	5000	0	97.0	90	110				
Chromium	5000	100	5000	0	100	90	110				
Lead	4690	25.0	5000	0	93.7	90	110				
Selenium	4740	100	5000	0	94.8	90	110				
Silver	4890	10.0	5000	0	97.9	90	110				

Specialty Analytical

Qualifiers:

В

0

Analyte detected in the associated Method Blank

RSD is greater than RSDlimit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD o

- RPD outside accepted recovery limits
- S Spike Recovery outside accepted reco

Page 4 of 69

WO#: **1701106**

06-Feb-17

Client: Project:	Parametrix Salmonberry -Botts Marsh / 27329	25007					Т	estCode: 6	020_S		
Sample ID: CCV	SampType: CCV	TestCo	de: 6020_S	Units: µg/Kg		Prep Da	te:		RunNo: 198	336	
Client ID: CCV	Batch ID: 9311	Test	No: SW6020A	SW3050B		Analysis Da	te: 1/25/20	17	SeqNo: 26	5581	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	4930	50.0	5000	0	98.5	90	110				
Sample ID: ICV	SampType: ICV	TestCo	de: 6020_S	Units: µg/Kg		Prep Da	te:		RunNo: 198	399	
Client ID: ICV	Batch ID: 9339	Test	No: SW6020A	SW3050B		Analysis Da	te: 1/30/20	17	SeqNo: 266	6544	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	4750	100	5000	0	95.1	90	110				
Barium	4960	50.0	5000	0	99.1	90	110				
Cadmium	4730	10.0	5000	0	94.6	90	110				
Chromium	5030	100	5000	0	101	90	110				
Lead	4870	25.0	5000	0	97.4	90	110				
Selenium	4790	100	5000	0	95.7	90	110				
Silver	4950	10.0	5000	0	99.1	90	110				
Sample ID: MB-9	339 SampType: MBLK	TestCo	de: 6020_S	Units: µg/Kg		Prep Da	te: 1/30/20)17	RunNo: 19 8	399	
Client ID: PBS	Batch ID: 9339	Test	No: SW6020A	SW3050B		Analysis Da	te: 1/30/20	17	SeqNo: 266	6545	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	ND	100									
Barium	ND	50.0									
Cadmium	ND	10.0									
Chromium	ND	100									
Lead	ND	25.0									
Qualifiers: H	Analyte detected in the associated Method	Blank	H Holdin	ng times for preparation	n or analysi	is exceeded	ND 1	Not Detected at th	e Reporting Lin	nit Pa	ige 5 of 6
(0 RSD is greater than RSDlimit		R RPD o	utside accepted recove	ery limits		S S	Spike Recovery ou	itside accepted i	reco	0

WO#: **1701106**

06-Feb-17

Client: Project:	Parametrix Salmonberr	y -Botts Marsh / 273292:	5007					Т	SestCode: 6	020_S		
Sample ID: Client ID:	MB-9339 PBS	SampType: MBLK Batch ID: 9339	TestCoc TestN	le: 6020_S lo: SW6020A	Units: µg/Kg SW3050B		Prep Da Analysis Da	te: 1/30/20 te: 1/30/20)17)17	RunNo: 198 SeqNo: 266	999 6545	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Selenium Silver		ND ND	100 10.0									
Sample ID:	LCS-9339	SampType: LCS	TestCoo	le: 6020_S	Units: µg/Kg		Prep Da	te: 1/30/20)17	RunNo: 198	99	
Client ID:	LCSS	Batch ID: 9339	TestN	lo: SW6020A	SW3050B		Analysis Da	te: 1/30/20)17	SeqNo: 266	546	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		4430	100	5000	0	88.7	73.4	120				
Barium		4920	50.0	5000	0	98.5	80	120				
Cadmium		4420	10.0	5000	0	88.5	80	120				
Chromium		5290	100	5000	0	106	80	120				
Lead		5220	25.0	5000	0	104	80	120				
Selenium		4440	100	5000	0	88.7	79.5	119				
Silver		5160	10.0	5000	0	103	12.3	165				
Sample ID:	1701106-010BDUP	SampType: DUP	TestCoo	le: 6020_S	Units: µg/Kg-a	dry	Prep Da	te: 1/30/20)17	RunNo: 198	399	
Client ID:	BM-B-16-6.0	Batch ID: 9339	TestN	lo: SW6020A	SW3050B		Analysis Da	te: 1/30/20	017	SeqNo: 266	549	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		3670	1450						3398	7.80	20	
Barium		28900	726						32410	11.4	20	
Cadmium		ND	145						0	0	20	RF
Chromium		24600	1450						24700	0.458	20	
Qualifiers:	B Analyte detectO RSD is greated	ted in the associated Method B er than RSDlimit	lank	H Holdir R RPD o	ng times for preparation utside accepted recove	n or analysi ry limits	is exceeded	ND I S S	Not Detected at the Spike Recovery ou	e Reporting Lim atside accepted r	it Pa eco	ge 6 of 69

WO#: **1701106**

06-Feb-17

Client: Project:	Parametrix Salmonberr	y -Botts Marsh / 273292	5007					Т	estCode: 6	020_S		
Sample ID:	1701106-010BDUP	SampType: DUP	TestCod	le: 6020_S	Units: µg/ł	Kg-dry	Prep Dat	e: 1/30/20	17	RunNo: 198	99	
Client ID:	BM-B-16-6.0	Batch ID: 9339	TestN	lo: SW6020A	SW3050B		Analysis Dat	e: 1/30/20	17	SeqNo: 266	549	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		3830	363						4227	9.85	20	
Selenium		ND	1450						0	0	20	
Silver		145	145						146.2	0.573	20	
Sample ID:	1701106-010BMS	SampType: MS	TestCoc	le: 6020_S	Units: µg/ł	Kg-dry	Prep Dat	e: 1/30/20	17	RunNo: 198	99	
Client ID:	BM-B-16-6.0	Batch ID: 9339	TestN	lo: SW6020A	SW3050B		Analysis Dat	e: 1/30/20	17	SeqNo: 266	550	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		9520	1420	7123	3398	85.9	70	130				
Barium		37800	712	7123	32410	75.6	70	130				
Cadmium		7450	142	7123	67.14	104	70	130				
Chromium		45200	1420	7123	24700	288	70	130				SMC
Lead		11800	356	7123	4227	107	70	130				
Selenium		6450	1420	7123	650.5	81.5	70	130				
Silver		7580	142	7123	146.2	104	70	130				
Sample ID:	1701106-010BMSD	SampType: MSD	TestCoc	le: 6020_S	Units: µg/ł	Kg-dry	Prep Dat	e: 1/30/20	17	RunNo: 198	99	
Client ID:	BM-B-16-6.0	Batch ID: 9339	TestN	lo: SW6020A	SW3050B		Analysis Dat	e: 1/30/20	17	SeqNo: 266	5551	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		9270	1480	7377	3398	79.6	70	130	9519	2.61	20	
Barium		37700	738	7377	32410	72.3	70	130	37800	0.138	20	
Cadmium		7140	148	7377	67.14	95.9	70	130	7454	4.28	20	
Qualifiers:	B Analyte detectO RSD is greate	ted in the associated Method B r than RSDlimit	lank	H Holdin R RPD o	g times for preparative states of the second states	ation or analys covery limits	is exceeded	ND I S S	Not Detected at th Spike Recovery ou	e Reporting Lim	it Pa eco	ge 7 of 69

WO#: **1701106**

06-Feb-17

Client: Project:	Pa Sa	arametrix almonberry	7 -Botts Marsh / 273292	5007					Т	estCode: 6	020_S		
Sample ID:	1701106-0	010BMSD	SampType: MSD	TestCoo	de: 6020_S	Units: µg/Kg-	dry	Prep Date	: 1/30/20	17	RunNo: 198	399	
Client ID:	BM-B-16-	6.0	Batch ID: 9339	TestN	lo: SW6020A	SW3050B		Analysis Date	: 1/30/20 [°]	17	SeqNo: 266	6551	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium			31500	1480	7377	24700	92.9	70	130	45190	35.6	20	R
Lead			10800	369	7377	4227	88.8	70	130	11840	9.37	20	
Selenium			6460	1480	7377	650.5	78.7	70	130	6455	0.0440	20	
Silver			7260	148	7377	146.2	96.4	70	130	7578	4.30	20	
Sample ID:	ICV		SampType: ICV	TestCoo	de: 6020_S	Units: µg/Kg		Prep Date	:		RunNo: 198	399	
Client ID:	ICV		Batch ID: 9339	TestN	lo: SW6020A	SW3050B		Analysis Date	: 1/31/20	17	SeqNo: 266	6674	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium			4920	50.0	5000	0	98.5	90	110				
Sample ID:	CCV		SampType: CCV	TestCoo	de: 6020_S	Units: µg/Kg		Prep Date	:		RunNo: 198	399	
Client ID:	CCV		Batch ID: 9339	TestN	lo: SW6020A	SW3050B		Analysis Date	: 1/31/20	17	SeqNo: 266	6675	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium			4980	50.0	5000	0	99.5	90	110				
Sample ID:	CCV		SampType: CCV	TestCoo	de: 6020_S	Units: µg/Kg		Prep Date	:		RunNo: 19 8	399	
Client ID:	CCV		Batch ID: 9339	TestN	lo: SW6020A	SW3050B		Analysis Date	: 1/31/20 [°]	17	SeqNo: 266	6677	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium			5280	50.0	5000	0	106	90	110				
Qualifiers:	B A O R	analyte detect SD is greater	ed in the associated Method I than RSDlimit	Blank	H Holdin R RPD o	g times for preparation utside accepted recover	n or analys ery limits	sis exceeded	ND N S S	Not Detected at the pike Recovery ou	e Reporting Lim	nit Pa reco	ge 8 of 69

WO#: 1701106

06-Feb-17

Specialty	Analytical
-----------	------------

Client:	Parametrix				
Project:	Salmonberry -Botts Marsh / 27329250	07		TestCode:	6020_S
Sample ID: CCV	SampType: CCV	TestCode: 6020_S	Units: µg/Kg	Prep Date:	RunNo: 19899
Client ID: CCV	Batch ID: 9339	TestNo: SW6020A	SW3050B	Analysis Date: 1/31/2017	SeqNo: 266677
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

Qualifiers: В Analyte detected in the associated Method Blank RSD is greater than RSDlimit

0

Holding times for preparation or analysis exceeded Н R RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted reco Page 9 of 69

WO#: **1701106**

06-Feb-17

Client: Project:	Parametrix Salmonberry -Botts Marsh / 2732	925007					Т	estCode: 6	020_W		
Sample ID: ICV	SampType: ICV	TestCode	e: 6020_W	Units: µg/L		Prep Dat	te:		RunNo: 197	81	
Client ID: ICV	Batch ID: 9289	TestNo	: SW6020A	SW3010A		Analysis Dat	te: 1/20/20	17	SeqNo: 264	717	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	47.1	0.100	50.00	0	94.1	90	110				
Barium	48.6	1.00	50.00	0	97.3	90	110				
Cadmium	45.8	0.100	50.00	0	91.7	90	110				
Chromium	50.7	0.100	50.00	0	101	90	110				
Lead	47.5	0.100	50.00	0	95.0	90	110				
Selenium	47.6	1.00	50.00	0	95.2	90	110				
Silver	48.6	0.100	50.00	0	97.2	90	110				
Sample ID: MB-92	B9 SampType: MBLK	TestCode	e: 6020_W	Units: µg/L		Prep Dat	te: 1/19/20	17	RunNo: 197	81	
Client ID: PBW	Batch ID: 9289	TestNo	: SW6020A	SW3010A		Analysis Dat	te: 1/20/20	17	SeqNo: 264	720	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	ND	0.100									
Barium	ND	1.00									
Cadmium	ND	0.100									
Chromium	ND	0.100									
Lead	ND	0.100									
Selenium	ND	1.00									
Silver	ND	0.100									

Specialty Analytical

Qualifiers: B Analyte detected in the associated Method Blank

0

- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside accepted reco

Page 10 of 69

- RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

Limit Page

WO#: **1701106**

06-Feb-17

Client: Project:	Parametrix Salmonberry	7 -Botts Marsh / 273292	25007					Т	estCode: 6	020_W		
Sample ID:	LCS-9289	SampType: LCS	TestCoo	de: 6020_W	Units: µg/L		Prep Dat	e: 1/19/20)17	RunNo: 197	'81	
Client ID:	LCSW	Batch ID: 9289	TestN	lo: SW6020A	SW3010A		Analysis Dat	e: 1/20/20	17	SeqNo: 264	721	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		50.2	0.100	50.00	0	100	80	120				
Barium		50.4	1.00	50.00	0	101	80	120				
Cadmium		50.0	0.100	50.00	0	99.9	80	120				
Chromium		47.1	0.100	50.00	0	94.2	80	120				
Lead		50.1	0.100	50.00	0	100	80	120				
Selenium		49.5	1.00	50.00	0	99.0	80	120				
Silver		50.1	0.100	50.00	0	100	80	120				
Sample ID:	A1701119-001BDUP	SampType: DUP	TestCoo	de: 6020_W	Units: µg/L		Prep Dat	e: 1/19/20)17	RunNo: 197	'81	
Client ID:	ZZZZZZ	Batch ID: 9289	TestN	lo: SW6020A	SW3010A		Analysis Dat	e: 1/20/20	17	SeqNo: 264	729	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		0.174	0.100						0.2007	14.0	20	
Barium		40.4	1.00						41.83	3.57	20	
Cadmium		0.925	0.100						1.001	7.95	20	
Chromium		0.963	0.100						1.001	3.88	20	
Lead		6.75	0.100						7.049	4.39	20	
Selenium		ND	1.00						0	0	20	
Silver		ND	0.100						0	0	20	RF

Specialty Analytical

Qualifiers:

В

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

eeded ND Not Detected at the Reporting Limit

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

Page 11 of 69

WO#: **1701106**

06-Feb-17

Client: Project:	Parametrix Salmonberry	7 -Botts Marsh / 273292	25007					Т	estCode: 6	020_W		
Sample ID:	A1701119-001BMS	SampType: MS	TestCoo	de: 6020_W	Units: µg/L		Prep Dat	ie: 1/19/20	17	RunNo: 197	781	
Client ID:	ZZZZZZ	Batch ID: 9289	TestN	lo: SW6020A	SW3010A		Analysis Dat	te: 1/20/20	17	SeqNo: 264	730	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		51.8	0.100	50.00	0.2007	103	70	130				
Barium		93.5	1.00	50.00	41.83	103	70	130				
Cadmium		51.4	0.100	50.00	1.001	101	70	130				
Chromium		53.2	0.100	50.00	1.001	104	70	130				
Lead		58.3	0.100	50.00	7.049	102	70	130				
Selenium		51.0	1.00	50.00	0	102	70	130				
Silver		48.8	0.100	50.00	0.009144	97.6	70	130				
Sample ID:	A1701119-001BMSD	SampType: MSD	TestCor	te: 6020 W	Units: ua/l		Prep Dat	e [.] 1/19/20	17	RunNo [.] 197	781	
Client ID:	ZZZZZZ	Batch ID: 9289	TestN	lo: SW6020A	SW3010A		Analysis Dat	ie: 1/20/20	17	SeqNo: 264	1731	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		52.2	0.100	50.00	0.2007	104	70	130	51.83	0.783	20	
Barium		93.2	1.00	50.00	41.83	103	70	130	93.54	0.406	20	
Cadmium		51.3	0.100	50.00	1.001	101	70	130	51.44	0.219	20	
Chromium		51.0	0.100	50.00	1.001	99.9	70	130	53.21	4.33	20	
Lead		58.4	0.100	50.00	7.049	103	70	130	58.25	0.210	20	
Selenium		51.8	1.00	50.00	0	104	70	130	51.01	1.45	20	
Silver		47.8	0.100	50.00	0.009144	95.5	70	130	48.80	2.14	20	

Specialty Analytical

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

analysis exceeded ND Not Detected at the Reporting Limit

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

Page 12 of 69

WO#: 1701106

06-Feb-17

Client: Project:	Parametrix Salmonberry -Botts Marsh / 273292	5007			TestCode: 60)20_W
Sample ID: CCV	SampType: CCV	TestCode: 6020_W	Units: µg/L	Prep Date	:	RunNo: 19781
Client ID: CCV	Batch ID: 9289	TestNo: SW6020A	SW3010A	Analysis Date	: 1 /20/2017	SeqNo: 264963
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit Qual
Arsenic	48.1	0.100 50.00	0	96.3 90	110	
Barium	48.4	1.00 50.00	0	96.7 90	110	
Cadmium	48.4	0.100 50.00	0	96.8 90	110	
Chromium	49.3	0.100 50.00	0	98.6 90	110	
Lead	47.3	0.100 50.00	0	94.6 90	110	
Selenium	47.6	1.00 50.00	0	95.2 90	110	
Silver	47.0	0.100 50.00	0	94.1 90	110	
Sample ID: ICV	SampType: ICV	TestCode: 6020_W	Units: µg/L	Prep Date	:	RunNo: 19781
Client ID: ICV	Batch ID: 9289	TestNo: SW6020A	SW3010A	Analysis Date	e: 1/23/2017	SeqNo: 265097
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit Qual
Barium	48.6	1.00 50.00	0	97.2 90	110	
Sample ID: CCV	SampType: CCV	TestCode: 6020_W	Units: µg/L	Prep Date	:	RunNo: 19781
Client ID: CCV	Batch ID: 9289	TestNo: SW6020A	SW3010A	Analysis Date	e: 1/23/2017	SeqNo: 265098
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit Qual
Barium	52.2	1.00 50.00	0	104 90	110	

Specialty Analytical

Qualifiers: В

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Н

ND Not Detected at the Reporting Limit

RSD is greater than RSDlimit 0

RPD outside accepted recovery limits R

S Spike Recovery outside accepted reco Page 13 of 69

WO#: 1701106

Client: Project:	Parametrix Salmonberry -Botts Marsh / 27329	25007					Т	estCode: 6	020_W		
Sample ID: CCV	SampType: CCV	TestCod	le: 6020_W	Units: µg/L		Prep Dat	e:		RunNo: 197	781	
Client ID: CCV	Batch ID: 9289	TestN	o: SW6020A	SW3010A		Analysis Dat	e: 1/23/20	17	SeqNo: 26	5103	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	50.8	1.00	50.00	0	102	90	110				
Sample ID: ICV	SampType: ICV	TestCod	le: 6020_W	Units: µg/L		Prep Dat	e:		RunNo: 199	918	
Client ID: ICV	Batch ID: 9347	TestN	o: SW6020A	SW3010A		Analysis Dat	e: 1/31/20	17	SeqNo: 266	6801	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	48.2	0.100	50.00	0	96.4	90	110				
Barium	49.2	1.00	50.00	0	98.5	90	110				
Cadmium	48.2	0.100	50.00	0	96.3	90	110				
Chromium	50.6	0.100	50.00	0	101	90	110				
Lead	49.1	0.100	50.00	0	98.2	90	110				
Selenium	49.0	1.00	50.00	0	98.0	90	110				
Silver	49.6	0.100	50.00	0	99.3	90	110				
Sample ID: MB-9	347 SampType: MBLK	TestCod	e: 6020_W	Units: µg/L		Prep Dat	e: 1/30/20)17	RunNo: 199	918	
Client ID: PBW	Batch ID: 9347	TestN	o: SW6020A	SW3010A		Analysis Dat	e: 1/31/20	17	SeqNo: 266	802	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	ND	0.100									
Barium	ND	1.00									
Cadmium	ND	0.100									
Chromium	ND	0.100									
Lead	ND	0.100									
Qualifiers: B	Analyte detected in the associated Method RSD is greater than RSDlimit	Blank	H Holdin R RPD o	ng times for preparation outside accepted recov	on or analysivery limits	is exceeded	ND I S S	Not Detected at the Spike Recovery ou	e Reporting Lim	nit Pag	ge 14 of 69

WO#: **1701106**

Client: Project:	Parametrix Salmonberry	y -Botts Marsh / 273292	25007					Т	estCode: 6	020_W		
Sample ID:	MB-9347	SampType: MBLK	TestCo	de: 6020_W	Units: µg/L		Prep Dat	e: 1/30/20	17	RunNo: 199	18	
Client ID:	PBW	Batch ID: 9347	Test	lo: SW6020A	SW3010A		Analysis Dat	e: 1/31/20	17	SeqNo: 266	802	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Selenium Silver		ND ND	1.00 0.100									
Sample ID:	LCS-9347	SampType: LCS	TestCo	de: 6020_W	Units: µg/L		Prep Dat	e: 1/30/20	17	RunNo: 199	18	
Client ID:	LCSW	Batch ID: 9347	Test	lo: SW6020A	SW3010A		Analysis Dat	e: 1/31/20	17	SeqNo: 266	803	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		50.0	0.100	50.00	0	100	80	120				
Barium		51.3	1.00	50.00	0	103	80	120				
Cadmium		51.5	0.100	50.00	0	103	80	120				
Chromium		50.1	0.100	50.00	0	100	80	120				
Lead		53.7	0.100	50.00	0	107	80	120				
Selenium		50.3	1.00	50.00	0	101	80	120				
Silver		58.7	0.100	50.00	0	117	80	120				
Sample ID:	A1701178-004CDUP	SampType: DUP	TestCo	de: 6020_W	Units: µg/L		Prep Dat	e: 1/30/20	17	RunNo: 199	18	
Client ID:	777777	Batch ID: 9347	Test	lo: SW6020A	SW3010A		Analysis Dat	e: 1/31/20	17	SeqNo: 266	809	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		3.66	0.100						3.502	4.50	20	
Barium		1.89	1.00						1.864	1.63	20	
Cadmium		ND	0.100						0	0	20	RF
Chromium		0.178	0.100						0.1736	2.45	20	
Qualifiers:	B Analyte detectO RSD is greater	ted in the associated Method I r than RSDlimit	Blank	H Holdir R RPD o	ng times for preparation putside accepted recov	on or analys very limits	is exceeded	ND N S S	Not Detected at the Spike Recovery ou	e Reporting Lim Itside accepted r	it Pag eco	e 15 of 69

WO#: **1701106**

Client: Project:		Parametrix Salmonberry	r -Botts Marsh / 27329	25007					Т	SestCode: 6	020_W		
Sample ID:	A17011	78-004CDUP	SampType: DUP	TestCoo	de: 6020_W	Units: µg/L		Prep Dat	te: 1/30/20)17	RunNo: 199	918	
Client ID:	ZZZZZZ	Z	Batch ID: 9347	TestN	lo: SW6020A	SW3010A		Analysis Dat	te: 1/31/20)17	SeqNo: 266	609	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead			ND	0.100						1.136	200	20	RF
Selenium			ND	1.00						0	200	20	RF
Silver			ND	0.100						0	0	20	
Sample ID:	A17011	78-004CMS	SampType: MS	TestCoo	de: 6020_W	Units: µg/L		Prep Dat	te: 1/30/20)17	RunNo: 199	918	
Client ID:	ZZZZZZ	Z	Batch ID: 9347	Test	lo: SW6020A	SW3010A		Analysis Dat	te: 1/31/20)17	SeqNo: 266	6810	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			58.6	0.100	50.00	3.502	110	70	130				
Barium			57.0	1.00	50.00	1.864	110	70	130				
Cadmium			49.8	0.100	50.00	0.01378	99.6	70	130				
Chromium			49.6	0.100	50.00	0.1736	98.9	70	130				
Lead			55.7	0.100	50.00	1.136	109	70	130				
Selenium			54.1	1.00	50.00	0.05456	108	70	130				
Silver			51.1	0.100	50.00	0	102	70	130				
Sample ID:	CCV		SampType: CCV	TestCoo	de: 6020_W	Units: µg/L		Prep Dat	te:		RunNo: 199	918	
Client ID:	ссу		Batch ID: 9347	TestN	lo: SW6020A	SW3010A		Analysis Dat	te: 1/31/20)17	SeqNo: 266	6811	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			48.4	0.100	50.00	0	96.8	90	110				
Barium			50.3	1.00	50.00	0	101	90	110				
Cadmium			48.4	0.100	50.00	0	96.8	90	110				
Qualifiers:	B O	Analyte detector RSD is greater	ed in the associated Method than RSDlimit	Blank	H Holdin R RPD o	g times for preparation utside accepted recov	on or analysivery limits	is exceeded	ND S	Not Detected at th Spike Recovery ou	e Reporting Lin	nit Pag reco	e 16 of 69

WO#: **1701106**

06-Feb-17

Client: Project:		Parametrix Salmonberry	-Botts Marsh / 27329	25007					Т	estCode: 6	020_W		
Sample ID:	CCV		SampType: CCV	TestCode	e: 6020_W	Units: µg/L		Prep Date	:		RunNo: 199	918	
Client ID:	ccv		Batch ID: 9347	TestNo	D: SW6020A	SW3010A		Analysis Date	: 1/31/20	17	SeqNo: 266	6811	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium			50.5	0.100	50.00	0	101	90	110				
Lead			50.2	0.100	50.00	0	100	90	110				
Selenium			48.2	1.00	50.00	0	96.5	90	110				
Silver			49.9	0.100	50.00	0	99.8	90	110				
Sample ID:	A17011	78-004CMSD	SampType: MSD	TestCode	e: 6020_W	Units: µg/L		Prep Date	: 1/30/20)17	RunNo: 199	918	
Client ID:	ZZZZZZ		Batch ID: 9347	TestNo	o: SW6020A	SW3010A		Analysis Date	: 1/31/20	17	SeqNo: 266	6812	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			57.3	0.100	50.00	3.502	108	70	130	58.59	2.29	20	
Barium			54.0	1.00	50.00	1.864	104	70	130	56.99	5.31	20	
Cadmium			49.6	0.100	50.00	0.01378	99.1	70	130	49.84	0.573	20	
Chromium			50.3	0.100	50.00	0.1736	100	70	130	49.60	1.41	20	
Lead			53.9	0.100	50.00	1.136	106	70	130	55.71	3.31	20	
Selenium			53.1	1.00	50.00	0.05456	106	70	130	54.12	1.85	20	
Silver			51.6	0.100	50.00	0	103	70	130	51.11	0.996	20	
Sample ID:	ICV		SampType: ICV	TestCode	e: 6020_W	Units: µg/L		Prep Date	:		RunNo: 19 9	918	
Client ID:	ICV		Batch ID: 9347	TestNo	D: SW6020A	SW3010A		Analysis Date	: 1/31/20	17	SeqNo: 266	6944	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			47.7	0.100	50.00	0	95.5	90	110				
Barium			47.5	1.00	50.00	0	95.0	90	110				
Qualifiers:	B O	Analyte detecte RSD is greater	ed in the associated Method than RSDlimit	Blank	H Holdin R RPD o	g times for preparation utside accepted recov	on or analysivery limits	is exceeded	ND N S S	Not Detected at the Spike Recovery ou	e Reporting Lim	nit Pag reco	e 17 of 69

WO#: **1701106**

06-Feb-17

Client: Project:	Parametrix Salmonberry -Botts Marsh / 273292	5007					Т	estCode: 6	020_W		
Sample ID: ICV	SampType: ICV	TestCod	e: 6020_W	Units: µg/L		Prep Date):		RunNo: 19!	918	
Client ID: ICV	Batch ID: 9347	TestN	o: SW6020A	SW3010A		Analysis Date	e: 1/31/20	17	SeqNo: 260	6944	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cadmium	48.1	0.100	50.00	0	96.1	90	110				
Chromium	49.2	0.100	50.00	0	98.3	90	110				
Lead	47.5	0.100	50.00	0	95.0	90	110				
Selenium	48.3	1.00	50.00	0	96.6	90	110				
Silver	52.8	0.100	50.00	0	106	90	110				
Sample ID: CCV	SampType: CCV	TestCod	e: 6020_W	Units: µg/L		Prep Date):		RunNo: 19 9	918	
Client ID: CCV	Batch ID: 9347	TestN	o: SW6020A	SW3010A		Analysis Date	e: 1/31/20	17	SeqNo: 266	6945	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	47.5	0.100	50.00	0	95.1	90	110				
Barium	49.6	1.00	50.00	0	99.2	90	110				
Cadmium	47.1	0.100	50.00	0	94.2	90	110				
Chromium	49.3	0.100	50.00	0	98.7	90	110				
Lead	49.6	0.100	50.00	0	99.2	90	110				
Selenium	47.0	1.00	50.00	0	93.9	90	110				
Silver	54.6	0.100	50.00	0	109	90	110				
Sample ID: ICV	SampType: ICV	TestCod	e: 6020_W	Units: µg/L		Prep Date	:		RunNo: 19 9	918	
Client ID: ICV	Batch ID: 9347	TestN	o: SW6020A	SW3010A		Analysis Date	e: 2/1/201	7	SeqNo: 267	7128	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	47.6	1.00	50.00	0	95.1	90	110				
Qualifiers: B	Analyte detected in the associated Method B RSD is greater than RSDlimit	lank	H Holdin R RPD o	g times for preparation utside accepted recov	on or analysi ery limits	is exceeded	ND N S S	Not Detected at the Spike Recovery ou	e Reporting Lim	nit Pag reco	e 18 of 6

WO#: 1701106

Client: Project:	Parametrix Salmonberry -Botts Marsh / 273292	6007			TestCode: 6020_W
Sample ID: ICV	SampType: ICV	TestCode: 6020_W	Units: µg/L	Prep Date:	RunNo: 19918
Client ID: ICV	Batch ID: 9347	TestNo: SW6020A	SW3010A	Analysis Date: 2/1/2	017 SeqNo: 267128
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLim	it RPD Ref Val %RPD RPDLimit Qual
Sample ID: CCV	SampType: CCV	TestCode: 6020_W	Units: µg/L	Prep Date:	RunNo: 19918
Client ID: CCV	Batch ID: 9347	TestNo: SW6020A	SW3010A	Analysis Date: 2/1/2	017 SeqNo: 267129
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLim	it RPD Ref Val %RPD RPDLimit Qual
Barium	46.9	1.00 50.00	0	93.9 90 11	0
Sample ID: CCV	SampType: CCV	TestCode: 6020_W	Units: µg/L	Prep Date:	RunNo: 19918
Client ID: CCV	Batch ID: 9347	TestNo: SW6020A	SW3010A	Analysis Date: 1/31/	2017 SeqNo: 267149
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLim	it RPD Ref Val %RPD RPDLimit Qual
Arsenic	48.2	0.100 50.00	0	96.4 90 11	0
Barium	49.1	1.00 50.00	0	98.1 90 11	0
Cadmium	48.9	0.100 50.00	0	97.7 90 11	0
Chromium	51.4	0.100 50.00	0	103 90 11	0
Lead	49.7	0.100 50.00	0	99.3 90 11	0
Selenium	48.3	1.00 50.00	0	96.6 90 11	0
Silver	49.6	0.100 50.00	0	99.1 90 11	0

Specialty Analytical

Qualifiers: В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Н

ND Not Detected at the Reporting Limit

Page 19 of 69

0 RSD is greater than RSDlimit

RPD outside accepted recovery limits R

S Spike Recovery outside accepted reco

WO#: 1701106

06-Feb-17

Client: Project:	Parametrix Salmonberry	/ -Botts Marsh / 2732	925007					TestCode:	6020_WDISS	
Sample ID: ICV		SampType: ICV	TestCoo	de: 6020_WDIS	S Units: µg/L		Prep Dat	te:	RunNo: 19913	
Client ID: ICV		Batch ID: 9351	TestN	lo: SW6020A			Analysis Dat	te: 1/31/2017	SeqNo: 266701	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref	Val %RPD RPDLimit	Qual
Arsenic		48.2	0.100	50.00	0	96.4	90	110		
Barium		49.2	1.00	50.00	0	98.5	90	110		
Cadmium		48.2	0.100	50.00	0	96.3	90	110		
Chromium		50.6	0.100	50.00	0	101	90	110		
Lead		49.1	0.100	50.00	0	98.2	90	110		
Selenium		49.0	1.00	50.00	0	98.0	90	110		
Silver		49.6	0.100	50.00	0	99.3	90	110		
Sample ID: 17011	06-046EMS	SampType: MS	TestCoo	de: 6020_WDIS	S Units: µg/L		Prep Dat	te: 1/31/2017	RunNo: 19913	
Client ID: BM-B-	-12-W	Batch ID: 9351	TestN	lo: SW6020A			Analysis Dat	te: 1/31/2017	SeqNo: 266707	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref	Val %RPD RPDLimit	Qual
Barium		582	10.0	500.0	81.23	100	70	130		
Sample ID: 17011	06-046EMSD	SampType: MSD	TestCoo	le: 6020_WDIS	S Units: µg/L		Prep Dat	te: 1/31/2017	RunNo: 19913	
Client ID: BM-B-	·12-W	Batch ID: 9351	TestN	lo: SW6020A			Analysis Dat	te: 1/31/2017	SeqNo: 266708	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref	Val %RPD RPDLimit	Qual
Barium		582	10.0	500.0	81.23	100	70	130 58	2.1 0.00192 20	

Specialty Analytical

Qualifiers:

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Н

ND Not Detected at the Reporting Limit

RSD is greater than RSDlimit 0

RPD outside accepted recovery limits R

S Spike Recovery outside accepted reco Page 20 of 69

WO#: 1701106

Client: Project:	Parametrix Salmonberr	y -Botts Marsh / 273292	5007					Те	estCode: 6	020_WDISS		
Sample ID:	1701106-046EDUP	SampType: DUP	TestCo	de: 6020_WDI	SS Units: μg/L		Prep Date	: 1/31/201	7	RunNo: 199	13	
Client ID:	BM-B-12-W	Batch ID: 9351	Test	No: SW6020A			Analysis Date	: 1/31/201	7	SeqNo: 266	5711	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		16.4	0.100						16.06	1.95	20	
Barium		81.0	1.00						83.18	2.60	20	
Cadmium		ND	0.100						0	0	20	
Chromium		0.613	0.100						0.6072	0.916	20	
Lead		0.199	0.100						0.2069	3.82	20	
Selenium		ND	1.00						0	0	20	RF
Silver		ND	0.100						0	0	20	
Sample ID:	1701106-046EMS	SampType: MS	TestCo	de: 6020_WDI	SS Units: µg/L		Prep Date	: 1/31/201	7	RunNo: 19 9)13	
Client ID:	BM-B-12-W	Batch ID: 9351	Test	No: SW6020A			Analysis Date	: 1/31/20 1	7	SeqNo: 266	6712	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		63.0	0.100	50.00	16.06	93.8	70	130				
Cadmium		46.9	0.100	50.00	0.01542	93.9	70	130				
Chromium		51.1	0.100	50.00	0.6072	101	70	130				
Lead		50.2	0.100	50.00	0.2069	100	70	130				
Selenium		45.9	1.00	50.00	0.08106	91.7	70	130				
Silver		49.4	0.100	50.00	0.007652	98.9	70	130				
Sample ID:	1701106-046EMSD	SampType: MSD	TestCo	de: 6020_WDI	SS Units: µg/L		Prep Date	: 1/31/201	7	RunNo: 199	013	
Client ID:	BM-B-12-W	Batch ID: 9351	Test	No: SW6020A			Analysis Date	: 1/31/20 1	7	SeqNo: 266	5713	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Qualifiers:	B Analyte detect	ted in the associated Method B	lank	H Holdin	g times for preparatio	on or analysi	s exceeded	ND N	ot Detected at th	e Reporting Lim	it Pag	e 21 of 69

O RSD is greater than RSDlimit

Specialty Analytical

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

WO#: 1701106

06-Feb-17

Client: Project:	Parametrix Salmonberr	y -Botts Marsh / 273292	5007					T	estCode: 6	020_WDISS		
Sample ID:	1701106-046EMSD	SampType: MSD	TestCo	de: 6020_WDIS	SS Units: µg/L		Prep Dat	e: 1/31/20	17	RunNo: 199	13	
Client ID:	BM-B-12-W	Batch ID: 9351	Test	No: SW6020A			Analysis Dat	e: 1/31/20	17	SeqNo: 266	6713	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		62.4	0.100	50.00	16.06	92.7	70	130	62.96	0.915	20	
Cadmium		46.4	0.100	50.00	0.01542	92.8	70	130	46.94	1.07	20	
Chromium		49.5	0.100	50.00	0.6072	97.9	70	130	51.12	3.15	20	
Lead		48.0	0.100	50.00	0.2069	95.6	70	130	50.24	4.49	20	
Selenium		45.9	1.00	50.00	0.08106	91.6	70	130	45.94	0.172	20	
Silver		47.6	0.100	50.00	0.007652	95.1	70	130	49.43	3.85	20	
Sample ID:	ICV	SampType: ICV	TestCo	de: 6020_WDIS	SS Units: µg/L		Prep Dat	e:		RunNo: 199	013	
Client ID:	ICV	Batch ID: 9351	Test	No: SW6020A			Analysis Dat	e: 1/31/20	17	SeqNo: 266	958	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		47.7	0.100	50.00	0	95.5	90	110				
Barium		47.5	1.00	50.00	0	95.0	90	110				
Cadmium		48.1	0.100	50.00	0	96.1	90	110				
Chromium		49.2	0.100	50.00	0	98.3	90	110				
Lead		47.5	0.100	50.00	0	95.0	90	110				
Selenium		48.3	1.00	50.00	0	96.6	90	110				
Silver		52.8	0.100	50.00	0	106	90	110				
Sample ID:	CCV	SampType: CCV	TestCo	de: 6020_WDIS	S Units: µg/L		Prep Dat	e:		RunNo: 199)13	
Client ID:	CCV	Batch ID: 9351	Test	No: SW6020A			Analysis Dat	e: 1/31/20	17	SeqNo: 266	960	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Analyte Oualifiers:	B Analyte detec	Result	PQL Blank	SPK value	SPK Ref Val	%REC	LowLimit s exceeded	HighLimit	RPD Ref Val	%RPD	RPDLimit	σ

O RSD is greater than RSDlimit

Specialty Analytical

2 OI 69 ige

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

WO#: 1701106

06-Feb-17

Client: Project:	Parametrix Salmonberry -Botts Marsh / 273	2925007					Т	estCode: 6	020_WDISS	1	
Sample ID: CCV	SampType: CCV	TestCo	de: 6020_WDI	SS Units: µg/L		Prep Dat	te:		RunNo: 199	13	
Client ID: CCV	Batch ID: 9351	Test	No: SW6020A			Analysis Dat	te: 1/31/20	17	SeqNo: 266	6960	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	47.5	0.100	50.00	0	95.1	90	110				
Barium	49.6	1.00	50.00	0	99.2	90	110				
Cadmium	47.1	0.100	50.00	0	94.2	90	110				
Chromium	49.3	0.100	50.00	0	98.7	90	110				
Lead	49.6	0.100	50.00	0	99.2	90	110				
Selenium	47.0	1.00	50.00	0	93.9	90	110				
Silver	54.6	0.100	50.00	0	109	90	110				
Sample ID: MB-93	51 SampType: MBLK	TestCo	de: 6020_WDI	SS Units: µg/L		Prep Dat	te: 1/31/20	17	RunNo: 19 9)13	
Client ID: PBW	Batch ID: 9351	Test	No: SW6020A			Analysis Dat	te: 1/31/20	17	SeqNo: 266	6962	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	ND	0.100									
Barium	ND	1.00									
Cadmium	ND	0.100									
Chromium	ND	0.100									
Lead	ND	0.100									
Selenium	ND	1.00									
Silver	ND	0.100									

Specialty Analytical

Qualifiers: Analyte detected in the associated Method Blank В

R

S Spike Recovery outside accepted reco Page 23 of 69

0 RSD is greater than RSDlimit

WO#: **1701106**

06-Feb-17

Sample ID: CCV MSVWS-2061	SampType: CCV	TestCo	de: 8260 5035	Units: ua/Ka		Prep Date	9:		RunNo: 19	914	
Client ID: CCV	Batch ID: 9355	Test	No: SW8260B	SW5035A		Analysis Date	e: 1/30/20	17	SeqNo: 26	6721	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	79.6	10.0	80.00	0	99.5	80	120				
1,2-Dichloropropane	88.1	10.0	80.00	0	110	80	120				
Chloroform	79.3	10.0	80.00	0	99.2	80	120				
Ethylbenzene	78.5	10.0	80.00	0	98.1	80	120				
Toluene	77.8	10.0	80.00	0	97.2	80	120				
Vinyl Chloride	67.7	10.0	80.00	0	84.6	80	120				
Sample ID: LCS MSVWS-2062	SampType: LCS	TestCo	de: 8260_5035	Units: µg/Kg		Prep Date	ə:		RunNo: 19	914	
Client ID: LCSS	Batch ID: 9355	Test	No: SW8260B	SW5035A		Analysis Date	e: 1/30/20	17	SeqNo: 26	6722	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	45.5	10.0	40.00	0	114	72.4	131				
Benzene	50.7	10.0	40.00	0	127	74.3	136				
Chlorobenzene	39.8	10.0	40.00	0	99.4	75.9	121				
Toluene	40.3	10.0	40.00	0	101	75.1	123				
Trichloroethene	48.4	10.0	40.00	0	121	77.8	129				
Sample ID: MB	SampType: MBLK	TestCo	de: 8260_5035	Units: µg/Kg		Prep Date	ə:		RunNo: 19	914	
Client ID: PBS	Batch ID: 9355	Test	No: SW8260B	SW5035A		Analysis Date	e: 1/30/20	17	SeqNo: 26	6723	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	ND	10.0									
1 1 1 Trichloroothana	ND	10.0									

1701106 WO#:

06-Feb-17

Client:ParametriProject:Salmonbe	x erry -Botts Marsh / 273292	5007					ן	festCode: 8	260_5035		
Sample ID: MB	SampType: MBLK	TestCode	e: 8260_5035	Units: µg/Kg		Prep Da	te:		RunNo: 19	914	
Client ID: PBS	Batch ID: 9355	TestNo	D: SW8260B	SW5035A		Analysis Da	te: 1/30/2	017	SeqNo: 26	6723	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,2,2-Tetrachloroethane	ND	10.0									
1,1,2-Trichloroethane	ND	10.0									
1,1-Dichloroethane	ND	10.0									
1,1-Dichloroethene	ND	10.0									
1,1-Dichloropropene	ND	10.0									
1,2,3-Trichlorobenzene	ND	10.0									
1,2,3-Trichloropropane	ND	10.0									
1,2,4-Trichlorobenzene	ND	10.0									
1,2,4-Trimethylbenzene	ND	10.0									
1,2-Dibromo-3-chloropropane	ND	10.0									
1,2-Dibromoethane	ND	10.0									
1,2-Dichlorobenzene	ND	10.0									
1,2-Dichloroethane	ND	10.0									
1,2-Dichloropropane	ND	10.0									
1,3,5-Trimethylbenzene	ND	10.0									
1,3-Dichlorobenzene	ND	10.0									
1,3-Dichloropropane	ND	10.0									
1,4-Dichlorobenzene	ND	10.0									
2,2-Dichloropropane	ND	10.0									
2-Butanone	ND	40.0									
2-Chlorotoluene	ND	10.0									
2-Hexanone	ND	20.0									
4-Chlorotoluene	ND	10.0									
4-Isopropyltoluene	ND	10.0									
4-Methyl-2-pentanone	ND	40.0									
Acetone	ND	100									
Qualifiers: B Analyte det	ected in the associated Method I	Blank	H Holdin	g times for preparation	n or analys	is exceeded	ND	Not Detected at the	e Reporting Lin	nit Pag	ge 25 of 69

Holding times for preparation or analysis exceeded Н

Not Detected at the Reporting Limit ND

O RSD is greater than RSDlimit

Specialty Analytical

R RPD outside accepted recovery limits S Spike Recovery outside accepted reco

Page 25 of 69

1701106 WO#:

06-Feb-17

Project:	Salmonberry -B	otts Marsh / 273292	5007					,	TestCode: 8	260_5035		
Sample ID: MB	Sa	mpType: MBLK	TestCo	de: 8260_5035	υnits: μg/Kg		Prep Da	te:		RunNo: 19	914	
Client ID: PBS	E	atch ID: 9355	Test	No: SW8260B	SW5035A		Analysis Da	te: 1/30/2	017	SeqNo: 26	6723	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene		ND	10.0									
Bromobenzene		ND	10.0									
Bromochlorometha	ne	ND	10.0									
Bromodichlorometh	ane	ND	10.0									
Bromoform		ND	10.0									
Bromomethane		ND	10.0									
Carbon Disulfide		ND	10.0									
Carbon tetrachlorid	Э	ND	10.0									
Chlorobenzene		ND	10.0									
Chloroethane		ND	10.0									
Chloroform		ND	10.0									
Chloromethane		ND	10.0									
cis-1,2-Dichloroeth	ene	ND	10.0									
cis-1,3-Dichloropro	bene	ND	10.0									
Dibromochlorometl	ane	ND	10.0									
Dibromomethane		ND	10.0									
Dichlorodifluorome	hane	ND	10.0									
Ethylbenzene		ND	10.0									
Hexachlorobutadie	ie	ND	10.0									
Isopropylbenzene		ND	10.0									
m,p-Xylene		ND	20.0									
Methyl tert-butyl etl	er	ND	10.0									
Methylene Chloride		ND	50.0									
Naphthalene		ND	10.0									
n-Butylbenzene		ND	10.0									
n-Propylbenzene		ND	10.0									

В

Specialty Analytical

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits S Spike Recovery outside accepted reco

WO#: **1701106**

06-Feb-17

Parametrix Salmonberr	y -Botts Marsh / 273292	5007					Т	estCode:	8260_5035		
	SampType: MBLK	TestCo	de: 8260_5035	σ Units: μg/Kg		Prep Da	te:		RunNo: 199	914	
	Batch ID: 9355	Test	No: SW8260B	SW5035A		Analysis Da	te: 1/30/20	17	SeqNo: 266	i723	
	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
	ND	10.0									
	ND	10.0									
	ND	10.0									
	ND	10.0									
	ND	10.0									
	ND	10.0									
thene	ND	10.0									
ropene	ND	10.0									
	ND	10.0									
ane	ND	10.0									
	ND	10.0									
oethane-d4	103		100.0		103	71.5	124				
orobenzene	102		100.0		102	75.7	122				
oromethane	110		100.0		110	64.3	124				
}	95.5		100.0		95.5	74.9	120				
	Parametrix Salmonberr thene ropene ane oethane-d4 orobenzene oromethane	Parametrix Salmonberry -Botts Marsh / 273292 SampType: MBLK Batch ID: 9355 Result ND	Parametrix Salmonberry -Botts Marsh / 2732925007 SampType: MBLK TestCo Batch ID: 9355 Test1 Result PQL ND 10.0 ND	Parametrix Salmonberry -Botts Marsh / 2732925007 SampType: MBLK TestCode: 8260_5038 Batch ID: 9355 TestNo: SW8260B Result PQL SPK value ND 10.0 ND 10.0 same ND 10.0 ND nopene ND 10.0 10.0 nopene ND 10.0 10.0 nopene ND 10.0 100.0 opethane-d4 103 100.0 100.0 orobenzene 102 100.0 100.0 same 95.5	Parametrix SampType: MBLK TestCode: 8260_5035 Units: µg/Kg Batch ID: 9355 TestNo: SW8260B SW5035A Result PQL SPK value SPK Ref Val ND 10.0 ND 10.0 Itenee ND 10.0 Interverterererererererererererererererere	Parametrix Salmonberry -Botts Marsh / 2732925007TestCode:8260_5035Units:µg/KgBatch ID:9355TestNo:SW8260BSW5035AResultPQLSPK valueSPK Ref Val%RECND10.0ND10.0Ker Val%RECND10.010.0Ker Val10.010.0ND10.010.010.010.010.0ND10.010.010.010.010.0ND10.0100.010.010.010.0ND10.0100.010.010.010.0ND100.0100.010.010.0ND100.0100.010.010.0ND100.0100.010.010.0ND100.0100.010.010.0ND100.0100.0100.0 <td>ND 10.0 ND 10.0 ND 10.0 ND 10.0 ropene ND 10.0 103 71.5 orobenzene 102 100.0 102 75.7 oromethane 110 100.0 100 100 64.3 95.5 100.0 95.5</td> <td>Parametrix Salmonberry -Botts Marsh / 2732925007 T SampType: MBLK TestCode: 8260_5035 Units: µg/Kg Prep Date: Batch ID: 9355 TestNo: SW8260B SW5035A Analysis Date: 1/30/20 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit ND 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0</td> <td>ND 100.0 ND 100.0 ND 10.0 10.0 ND 10.0<td>Parametrix Test Out >> 200 (200 (200 (200 (200 (200 (200 (2</td><td>Parametrix Samonberry-Botts Marsh / 2732925007 TestCode: 1860_5035 TestCode: 1860_5035 SampType: MBLK TestCode: Stac0_5035 Units: µg/Kg Prep Date: 130/201 SeqNo: 193/201 Batch ID: 9355 TestWee200 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit ND 10.0 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit ND 10.0 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit ND 10.0 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit ND 10.0 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD %R</td></td>	ND 10.0 ND 10.0 ropene ND 10.0 103 71.5 orobenzene 102 100.0 102 75.7 oromethane 110 100.0 100 100 64.3 95.5 100.0 95.5	Parametrix Salmonberry -Botts Marsh / 2732925007 T SampType: MBLK TestCode: 8260_5035 Units: µg/Kg Prep Date: Batch ID: 9355 TestNo: SW8260B SW5035A Analysis Date: 1/30/20 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit ND 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	ND 100.0 ND 100.0 ND 10.0 10.0 ND 10.0 <td>Parametrix Test Out >> 200 (200 (200 (200 (200 (200 (200 (2</td> <td>Parametrix Samonberry-Botts Marsh / 2732925007 TestCode: 1860_5035 TestCode: 1860_5035 SampType: MBLK TestCode: Stac0_5035 Units: µg/Kg Prep Date: 130/201 SeqNo: 193/201 Batch ID: 9355 TestWee200 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit ND 10.0 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit ND 10.0 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit ND 10.0 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit ND 10.0 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD %R</td>	Parametrix Test Out >> 200 (200 (200 (200 (200 (200 (200 (2	Parametrix Samonberry-Botts Marsh / 2732925007 TestCode: 1860_5035 TestCode: 1860_5035 SampType: MBLK TestCode: Stac0_5035 Units: µg/Kg Prep Date: 130/201 SeqNo: 193/201 Batch ID: 9355 TestWee200 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit ND 10.0 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit ND 10.0 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit ND 10.0 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit ND 10.0 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD %R

Sample ID: 1701106-001CMS	SampType: MS	TestCoo	le: 8260_5035	i Units: μg/Kg-d	ry	Prep Da	te:		RunNo: 199	014	
Client ID: BM-B-20-1.0	Batch ID: 9355	TestN	lo: SW8260B	SW5035A		Analysis Da	te: 1/30/20	17	SeqNo: 266	6729	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	59.4	15.4	61.75	0	96.2	69.2	158				
Benzene	63.8	15.4	61.75	0	103	71.7	147				
Chlorobenzene	51.6	15.4	61.75	0	83.6	75	148				
Toluene	54.3	15.4	61.75	0	87.9	75.8	153				

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

eeded ND Not Detected at the Reporting Limit

S

O RSD is greater than RSDlimit

Specialty Analytical

R RPD outside accepted recovery limits

Spike Recovery outside accepted reco

Page 27 of 69

WO#: **1701106**

Client: Parametrix Project: Salmonberr	ry -Botts Marsh / 273292	5007					Т	'estCode: 8	8260_5035		
Sample ID: 1701106-001CMS Client ID: BM-B-20-1.0	SampType: MS Batch ID: 9355	TestCoo TestN	de: 8260_5035 No: SW8260B	5 Units: μg/Kg-α SW5035A	lry	Prep Dat Analysis Dat	e: e: 1/30/20	17	RunNo: 19 SeqNo: 26	914 6729	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Trichloroethene	58.9	15.4	61.75	0	95.4	77.1	138				
Sample ID: 1701106-001CMSD	SampType: MSD	TestCoo	de: 8260_5035	υnits: μg/Kg-α	dry	Prep Dat	e:		RunNo: 199	914	
Sample ID: 1701106-001CMSD Client ID: BM-B-20-1.0	SampType: MSD Batch ID: 9355	TestCoo TestN	de: 8260_5035 No: SW8260B	5 Units: μg/Kg-α SW5035A	dry	Prep Dat Analysis Dat	e: e: 1/30/20	17	RunNo: 199 SeqNo: 266	914 6730	
Sample ID: 1701106-001CMSD Client ID: BM-B-20-1.0 Analyte	SampType: MSD Batch ID: 9355 Result	TestCoo TestN PQL	de: 8260_5035 No: SW8260B SPK value	i Units: μg/Kg-α SW5035A SPK Ref Val	dry %REC	Prep Dat Analysis Dat LowLimit	e: e: 1/30/20 HighLimit	1 17 RPD Ref Val	RunNo: 199 SeqNo: 266 %RPD	914 6730 RPDLimit	Qual
Sample ID: 1701106-001CMSD Client ID: BM-B-20-1.0 Analyte 1,1-Dichloroethene	SampType: MSD Batch ID: 9355 Result 61.4	TestCoo TestN PQL 15.4	de: 8260_5035 No: SW8260B SPK value 61.75	5 Units: μg/Kg-α SW5035A SPK Ref Val 0	dry %REC 99.4	Prep Dat Analysis Dat LowLimit 69.2	e: e: 1/30/20 HighLimit 158	117 RPD Ref Val 59.41	RunNo: 199 SeqNo: 260 %RPD 3.25	914 5730 RPDLimit 20	Qual
Sample ID: 1701106-001CMSD Client ID: BM-B-20-1.0 Analyte 1,1-Dichloroethene Benzene	SampType: MSD Batch ID: 9355 Result 61.4 63.4	TestCoo TestN PQL 15.4 15.4	de: 8260_5035 No: SW8260B SPK value 61.75 61.75	5 Units: μ g/Kg-σ SW5035A SPK Ref Val 0 0	dry %REC 99.4 103	Prep Dat Analysis Dat LowLimit 69.2 71.7	e: e: 1/30/20 HighLimit 158 147	117 RPD Ref Val 59.41 63.75	RunNo: 199 SeqNo: 266 %RPD 3.25 0.607	214 5730 RPDLimit 20 20	Qual
Sample ID: 1701106-001CMSD Client ID: BM-B-20-1.0 Analyte 1,1-Dichloroethene Benzene Chlorobenzene	SampType: MSD Batch ID: 9355 Result 61.4 63.4 56.0	TestCoo TestN PQL 15.4 15.4 15.4	de: 8260_5035 No: SW8260B SPK value 61.75 61.75 61.75	5 Units: μg/Kg-α SW5035A SPK Ref Val 0 0 0	%REC 99.4 103 90.6	Prep Dat Analysis Dat LowLimit 69.2 71.7 75	e: e: 1/30/20 HighLimit 158 147 148	17 RPD Ref Val 59.41 63.75 51.63	RunNo: 199 SeqNo: 260 %RPD 3.25 0.607 8.03	214 5730 RPDLimit 20 20 20	Qual
Sample ID: 1701106-001CMSD Client ID: BM-B-20-1.0 Analyte 1,1-Dichloroethene Benzene Chlorobenzene Toluene	SampType: MSD Batch ID: 9355 Result 61.4 63.4 56.0 59.7	TestCoo TestN PQL 15.4 15.4 15.4 15.4 15.4	de: 8260_5035 No: SW8260B SPK value 61.75 61.75 61.75 61.75 61.75	5 Units: μg/Kg-α SW5035A SPK Ref Val 0 0 0 0 0	%REC 99.4 103 90.6 96.7	Prep Dat Analysis Dat LowLimit 69.2 71.7 75 75.8	e: e: 1/30/20 HighLimit 158 147 148 153	17 RPD Ref Val 59.41 63.75 51.63 54.26	RunNo: 199 SeqNo: 260 %RPD 3.25 0.607 8.03 9.59	214 5730 RPDLimit 20 20 20 20 20	Qual

Specialty Analytical

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

Page 28 of 69

WO#: **1701106**

06-Feb-17

Client: Parametrix Project: Salmonberry	y -Botts Marsh / 273292	5007					Т	festCode: 8	260_W		
Sample ID: CCV MSVWS-2061	SampType: CCV	TestCo	de: 8260_W	Units: µg/L		Prep Date	ə:		RunNo: 199	003	
Client ID: CCV	Batch ID: R19903	Test	No: SW8260B			Analysis Date	e: 1/27/2 0	017	SeqNo: 266	678	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	37.3	1.00	40.00	0	93.4	80	120				
1,2-Dichloropropane	44.1	1.00	40.00	0	110	80	120				
Chloroform	39.7	1.00	40.00	0	99.2	80	120				
Ethylbenzene	34.5	1.00	40.00	0	86.4	80	120				
Toluene	36.9	1.00	40.00	0	92.4	80	120				
Vinyl chloride	42.7	1.00	40.00	0	107	80	120				
Sample ID: LCS MSVWS-2062	SampType: LCS	TestCo	de: 8260_W	Units: µg/L		Prep Date	e:		RunNo: 199	903	
Client ID: LCSW	Batch ID: R19903	Test	No: SW8260B			Analysis Date	e: 1/27/20	017	SeqNo: 266	679	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	33.0	1.00	40.00	0	82.5	61.2	135				
Benzene	41.5	0.300	40.00	0	104	76.8	125				
Chlorobenzene	36.6	1.00	40.00	0	91.6	84.1	116				
Toluene	35.2	1.00	40.00	0	88.1	82	122				
Trichloroethene	37.4	1.00	40.00	0	93.5	68.5	124				
Sample ID: LCSD MSVWS-2062	SampType: LCSD	TestCo	de: 8260_W	Units: µg/L		Prep Date	e:		RunNo: 199	903	
Client ID: LCSS02	Batch ID: R19903	Test	No: SW8260B			Analysis Date	e: 1/27/2(017	SeqNo: 266	680	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	37.7	1.00	40.00	0	94.3	61.2	135	33.00	13.3	20	
Benzene	43.7	0.300	40.00	0	109	76.8	125	41.54	5.14	20	
Qualifiers: B Analyte detect O RSD is greater	ed in the associated Method B than RSDlimit	Blank	H Holdin R RPD o	g times for preparation utside accepted recov	on or analysi ery limits	s exceeded	ND S	Not Detected at th Spike Recovery ou	e Reporting Lim	iit Pag eco	e 29 of 69

WO#: **1701106**

06-Feb-17

Client: Parametrix Project: Salmonberry	y -Botts Marsh / 273292	5007					Т	SestCode: 8	260_W		
Sample ID: LCSD MSVWS-2062	SampType: LCSD	TestCo	de: 8260_W	Units: µg/L		Prep Da	te:		RunNo: 199	903	
Client ID: LCSS02	Batch ID: R19903	Test	No: SW8260B			Analysis Da	te: 1/27/20)17	SeqNo: 266	680	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chlorobenzene	37.9	1.00	40.00	0	94.8	84.1	116	36.65	3.35	20	
Toluene	36.9	1.00	40.00	0	92.2	82	122	35.25	4.52	20	
Trichloroethene	39.3	1.00	40.00	0	98.2	68.5	124	37.40	4.93	20	
Sample ID: A1701162-001AMS	SampType: MS	TestCo	de: 8260_W	Units: µg/L		Prep Da	te:		RunNo: 199	903	
Client ID: ZZZZZZ	Batch ID: R19903	Testl	No: SW8260B			Analysis Da	te: 1/27/20)17	SeqNo: 266	681	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	43.7	1.00	40.00	0	109	47.8	165				
Benzene	45.8	0.300	40.00	0	114	74.1	136				
Chlorobenzene	40.4	1.00	40.00	0	101	70.7	133				
Toluene	39.6	1.00	40.00	0	99.0	68.4	135				
Trichloroethene	41.5	1.00	40.00	0	104	50.8	164				
Sample ID: A1701162-001AMSD	SampType: MSD	TestCo	de: 8260_W	Units: µg/L		Prep Da	te:		RunNo: 19 9	903	
Client ID: ZZZZZZ	Batch ID: R19903	Test	No: SW8260B			Analysis Da	te: 1/27/20)17	SeqNo: 266	682	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	45.1	1.00	40.00	0	113	47.8	165	43.72	3.04	20	
Benzene	44.4	0.300	40.00	0	111	74.1	136	45.77	3.15	20	
Chlorobenzene	38.6	1.00	40.00	0	96.5	70.7	133	40.35	4.41	20	
Toluene	37.6	1.00	40.00	0	94.0	68.4	135	39.62	5.23	20	
Trichloroethene	39.1	1.00	40.00	0	97.9	50.8	164	41.54	5.95	20	
Qualifiers:BAnalyte detectorORSD is greater	ed in the associated Method E than RSDlimit	Blank	H Holdin R RPD o	g times for preparatio utside accepted recov	on or analysi ery limits	s exceeded	ND I S S	Not Detected at th Spike Recovery ou	e Reporting Lim itside accepted r	iit Pag eco	e 30 of 69

WO#: **1701106**

Client:ParametrixProject:Salmonberry	-Botts Marsh / 273292:	5007		TestCode: 8	3260_W
Sample ID: A1701162-001AMSD	SampType: MSD	TestCode: 8260_W	Units: µg/L	Prep Date:	RunNo: 19903
Client ID: ZZZZZZ	Batch ID: R19903	TestNo: SW8260	3	Analysis Date: 1/27/2017	SeqNo: 266682
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Sample ID: MB	SampType: MBLK	TestCode: 8260_W	Units: µg/L	Prep Date:	RunNo: 19903
Client ID: PBW	Batch ID: R19903	TestNo: SW8260	3	Analysis Date: 1/27/2017	SeqNo: 266683
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
1,1,1,2-Tetrachloroethane	ND	1.00			
1,1,1-Trichloroethane	ND	1.00			
1,1,2,2-Tetrachloroethane	ND	1.00			
1,1,2-Trichloro-1,2,2-trifluoroethane	e ND	1.00			
1,1,2-Trichloroethane	ND	1.00			
1,1-Dichloroethane	ND	1.00			
1,1-Dichloroethene	ND	1.00			
1,1-Dichloropropene	ND	1.00			
1,2,3-Trichlorobenzene	ND	1.00			
1,2,3- I richloropropane	ND	1.00			
1,2,4-I richlorobenzene	ND	1.00			
1,2,4-1 rimetnyibenzene	ND	1.00			
1,2-Dibromosthana		1.00			
1,2-Diblomoethane		1.00			
1.2-Dichloroethane		1.00			
1 2-Dichloropropage		1.00			
1.3.5-Trimethylbenzene	ND	1.00			
1,3-Dichlorobenzene	ND	1.00			

Qualifiers:

В

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

O RSD is greater than RSDlimit

Specialty Analytical

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

Page 31 of 69

WO#: 1701106

06-Feb-17

Client: Project:	Parametrix Salmonberry -Botts Marsh / 2732925007					TestCode: 8260_W						
Sample ID: MB	SampType: MB	BLK Test	Code: 8260_W	Units: µg/L	Prep Date: RunNo: 19903			903				
Client ID: PBW	Batch ID: R1	9903 Te	stNo: SW8260B	i		Analysis Da	nte: 1/27/2	017	SeqNo: 266	683		
Analyte	Re	esult PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
1,3-Dichloropropane	e	ND 1.00										
1,4-Dichlorobenzen	e	ND 1.00										
2,2-Dichloropropan	e	ND 1.00										
2-Butanone		ND 10.0										
2-Chlorotoluene		ND 1.00										
2-Hexanone		ND 10.0										
4-Chlorotoluene		ND 1.00										
4-Isopropyltoluene		ND 1.00										
4-Methyl-2-pentano	ne	ND 20.0										
Acetone		ND 50.0										
Acrylonitrile		ND 5.00										
Benzene		ND 0.300										
Bromobenzene		ND 1.00										
Bromochlorometha	ne	ND 1.00										
Bromodichlorometh	ane	ND 1.00										
Bromoform		ND 1.00										
Bromomethane		ND 1.00										
Carbon disulfide		ND 2.00										
Carbon tetrachlorid	e	ND 1.00										
Chlorobenzene		ND 1.00										
Chloroethane		ND 1.00										
Chloroform		ND 1.00										
Chloromethane		ND 1.00										
cis-1,2-Dichloroethe	ene	ND 1.00										
cis-1,3-Dichloroprop	bene	ND 1.00										
Dibromochlorometh	ane	ND 1.00										
Qualifiers: B	Analyte detected in the associated	d Method Blank	H Holdin	ng times for preparatio	on or analysi	is exceeded	ND	Not Detected at the	e Reporting Lim	it Pag	e 32 of 69	

Specialty Analytical

Н Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

O RSD is greater than RSDlimit

RPD outside accepted recovery limits R

S Spike Recovery outside accepted reco Page 32 of 69

WO#: 1701106

06-Feb-17

Client:ParametrixProject:Salmonberry	Parametrix Salmonberry -Botts Marsh / 2732925007					TestCode: 8260_W						
Sample ID: MB	SampType: MBLK	TestCo	de: 8260_W	Units: µg/L	Prep Date:				RunNo: 19903			
Client ID: PBW	Batch ID: R19903	TestNo: SW8260B				Analysis Da	ite: 1/27/20	: 1/27/2017		SeqNo: 266683		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Dibromomethane	ND	1.00										
Dichlorodifluoromethane	ND	1.00										
Ethylbenzene	ND	1.00										
Hexachlorobutadiene	ND	1.00										
Isopropylbenzene	ND	1.00										
m,p-Xylene	ND	2.00										
Methyl tert-butyl ether	ND	1.00										
Methylene chloride	ND	20.0										
Naphthalene	ND	1.00										
n-Butylbenzene	ND	1.00										
n-Propylbenzene	ND	1.00										
o-Xylene	ND	1.00										
sec-Butylbenzene	ND	1.00										
Styrene	ND	1.00										
tert-Butylbenzene	ND	1.00										
Tetrachloroethene	ND	1.00										
Toluene	ND	1.00										
trans-1,2-Dichloroethene	ND	1.00										
trans-1,3-Dichloropropene	ND	1.00										
Trichloroethene	ND	1.00										
Trichlorofluoromethane	ND	1.00										
Vinyl chloride	ND	1.00										
Surr: 1,2-Dichloroethane-d4	85.4		100.0		85.4	75.3	126					
Surr: 4-Bromofluorobenzene	102		100.0		102	78.1	120					
Surr: Dibromofluoromethane	96.6		100.0		96.6	74.2	122					
Surr: Toluene-d8	92.5		100.0		92.5	76.2	135					
Qualifiers: B Analyte detected in the associated Method Blank			H Holdin	g times for preparation	on or analys	is exceeded	ND	Not Detected at th	e Reporting Lin	nit Pag	ge 33 of 69	

O RSD is greater than RSDlimit

Specialty Analytical

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco
WO#: 1701106

06-Feb-17

Client: Project:	Parametrix Salmonberry -Botts Marsh / 27329250	007		TestCode:	8260_W
Sample ID: MB Client ID: PBW	SampType: MBLK Batch ID: R19903	TestCode: 8260_W TestNo: SW8260B	Units: µg/L	Prep Date: Analysis Date: 1/27/2017	RunNo: 19903 SeqNo: 266683
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

Qualifiers: В Analyte detected in the associated Method Blank RSD is greater than RSDlimit

0

Holding times for preparation or analysis exceeded Н R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco Page 34 of 69

8270AFLL_S

RunNo: 19938

SeqNo: 267154

%RPD RPDLimit

TestCode:

Prep Date:

80

%REC

80.4

Analysis Date: 1/30/2017

LowLimit HighLimit RPD Ref Val

120

WO#: 1701106

Qual

Client: Project:	Parametrix Salmonberr	y -Botts Marsh / 273292	25007		
Sample ID: CC	V MSSWS-1410 V	SampType: CCV Batch ID: 9334	TestCoo TestN	de: 8270AFLL No: SW8270D	_S Units: μg/Kg SW 3545A
Analyte		Result	PQL	SPK value	SPK Ref Val
Pentachlorophe	nol	536	500	666.6	0

Specialty Analytical

Sample ID: MB-9334 SampType: MBLK TestCode: 8270AFLL_S Units: µg/Kg Prep Date: 1/27/2017 RunNo: 19938 Client ID: PBS Batch ID: 9334 TestNo: SW8270D SW 3545A Analysis Date: 1/30/2017 SeqNo: 267155 PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Analyte Result Pentachlorophenol ND 500 Surr: 2,4,6-Tribromophenol 2330 3333 69.9 119 39.1 Surr: 2-Fluorophenol 3333 65.2 111 2170 40.7 Surr: Phenol-d6 2420 3333 72.7 37.5 117 Sample ID: 1701106-032BMS SampType: MS TestCode: 8270AFLL_S Units: µg/Kg Prep Date: 1/27/2017 RunNo: 19938

Client ID: BM-B-3-1.0	Batch ID: 9334	Test	lo: SW8270D	SW 3545A		Analysis Da	te: 1/30/20	17	SeqNo: 267	'161	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachlorophenol	761	500	1666	0	45.7	30	130				

Sample ID: 1	701106-032BMSD	SampType: MSD	TestCo	de: 8270AFLL	_S Units: µg/Kg		Prep Dat	te: 1/27/20	17	RunNo: 199	38	
Client ID: B	ВМ-В-3-1.0	Batch ID: 9334	Test	No: SW8270D	SW 3545A		Analysis Dat	te: 1/30/20	17	SeqNo: 267	162	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachlorop	henol	849	500	1666	0	50.9	30	130	761.0	10.9	30	
Oualifiers:	B Analyte dete	cted in the associated Method Bl	ank	H Holdin	g times for preparation	n or analysi	s exceeded	ND 1	Not Detected at the	e Reporting Limi	it Pag	e 35 of 69

Qualifiers: в

Holding times for preparation or analysis exceeded Η

0 RSD is greater than RSDlimit

RPD outside accepted recovery limits R

Not Detected at the Reporting Limit ND S Spike Recovery outside accepted reco Page 35 of 69

WO#: **1701106**

Client: Parametrix					
Project: Salmonberr	y -Botts Marsh / 2732925	007		TestCode:	3270AFLL_S
Sample ID: 1701106-032BMSD	SampType: MSD	TestCode: 8270AFLL	S Units: µg/Kg	Prep Date: 1/27/2017	RunNo: 19938
Client ID: BM-B-3-1.0	Batch ID: 9334	TestNo: SW8270D	SW 3545A	Analysis Date: 1/30/2017	SeqNo: 267162
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Sample ID: LCS-9334	SampType: LCS	TestCode: 8270AFLL_	S Units: µg/Kg	Prep Date: 1/27/2017	RunNo: 19938
Client ID: LCSS	Batch ID: 9334	TestNo: SW8270D	SW 3545A	Analysis Date: 1/30/2017	SeqNo: 267163
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Pentachlorophenol	983	500 1666	0	59.0 30 130	

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit F

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

Page 36 of 69

WO#: 1701106

Specially Analytical	lty Analytical
----------------------	----------------

Client:	Parametrix											
Project:	Salmonberry	-Botts Marsh / 2732	925007					Т	TestCode: H	IG_CT		
Sample ID: MB-92	292	SampType: MBLK	TestCo	de: HG_CT	Units: mg/L		Prep Dat	e: 1/20/20	17	RunNo: 19	779	
Client ID: PBW		Batch ID: 9292	Test	No: E7470A	E245.1		Analysis Dat	ie: 1/20/20	17	SeqNo: 264	4678	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		ND	0.000100									
Sample ID: LCS-9	292	SampType: LCS	TestCo	de: HG_CT	Units: mg/L		Prep Dat	e: 1/20/20	17	RunNo: 19	779	
Client ID: LCSW	1	Batch ID: 9292	Test	No: E7470A	E245.1		Analysis Dat	ie: 1/20/20	17	SeqNo: 264	4679	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		0.00387	0.000100	0.004000	0	96.8	85.4	116				
Sample ID: 17011	06-043DDUP	SampType: DUP	TestCo	de: HG_CT	Units: mg/L		Prep Dat	ie: 1/20/20)17	RunNo: 19	779	
Client ID: BM-FI	D-011717-W	Batch ID: 9292	Test	No: E7470A	E245.1		Analysis Dat	ie: 1/20/20	17	SeqNo: 264	4681	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		ND	0.000100						0	0	20	
Sample ID: 17011	06-043DMS	SampType: MS	TestCo	de: HG_CT	Units: mg/L		Prep Dat	ie: 1/20/20)17	RunNo: 19	779	
Client ID: BM-FI	D-011717-W	Batch ID: 9292	Test	No: E7470A	E245.1		Analysis Dat	ie: 1/20/20	17	SeqNo: 264	4682	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		0.00387	0.000100	0.004000	0	96.8	69.5	125				

Qualifiers:

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Н

ND Not Detected at the Reporting Limit

0 RSD is greater than RSDlimit R RPD outside accepted recovery limits S Spike Recovery outside accepted reco Page 37 of 69

WO#: 1701106

Client: Project:	Parametrix Salmonberr	y -Botts Marsh / 2732	925007		TestCode: H	IG_CT
Sample ID	1701106-043DMSD	SampType: MSD	TestCode: HG_CT	Units: mg/L	Prep Date: 1/20/2017	RunNo: 19779
Client ID:	BM-FD-011717-W	Batch ID: 9292	TestNo: E7470A	E245.1	Analysis Date: 1/20/2017	SeqNo: 264683
Analyte		Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		0.00407	0.000100 0.004000	0	102 69.5 125 0.003874	4.86 20
Sample ID	9292-CCV	SampType: CCV	TestCode: HG_CT	Units: mg/L	Prep Date:	RunNo: 19779
Client ID:	CCV	Batch ID: 9292	TestNo: E7470A	E245.1	Analysis Date: 1/20/2017	SeqNo: 264690
Analyte		Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		0.00428	0.000100 0.004000	0	107 90 110	
Sample ID	9292-CCV	SampType: CCV	TestCode: HG_CT	Units: mg/L	Prep Date:	RunNo: 19779
Client ID:	CCV	Batch ID: 9292	TestNo: E7470A	E245.1	Analysis Date: 1/20/2017	SeqNo: 264692
Analyte		Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		0.00420	0.000100 0.004000	0	105 90 110	
Sample ID	: MB-9362	SampType: MBLK	TestCode: HG_CT	Units: mg/L	Prep Date: 2/1/2017	RunNo: 19930
Client ID:	PBW	Batch ID: 9362	TestNo: E7470A	E245.1	Analysis Date: 2/1/2017	SeqNo: 267036
Analyte		Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		ND	0.000100			

Specialty Analytical

Qualifiers:

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Н

ND Not Detected at the Reporting Limit

Page 38 of 69

0 RSD is greater than RSDlimit

RPD outside accepted recovery limits R

S Spike Recovery outside accepted reco

WO#: **1701106**

Client: Project:	Parametrix Salmonberry	y -Botts Marsh / 2732	925007		TestCode: H	IG_CT
Sample ID: Client ID:	LCS-9362 LCSW	SampType: LCS Batch ID: 9362	TestCode: HG_C TestNo: E747(T Units: mg/L A E245.1	Prep Date: 2/1/2017 Analysis Date: 2/1/2017	RunNo: 19930 SeqNo: 267037
Analyte		Result	PQL SPK va	lue SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		0.00386	0.000100 0.004	000 0	96.5 85.4 116	
Sample ID: Client ID:	: 1701106-046DDUP BM-B-12-W	SampType: DUP Batch ID: 9362	TestCode: HG_C TestNo: E7470	T Units: mg/L A E245.1	Prep Date: 2/1/2017 Analysis Date: 2/1/2017	RunNo: 19930 SeqNo: 267039
Analyte		Result	PQL SPK va	lue SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		ND	0.000100		0	0 20
Sample ID:	: 1701106-046DMS	SampType: MS	TestCode: HG_C	T Units: mg/L	Prep Date: 2/1/2017	RunNo: 19930
Client ID:	BM-B-12-W	Batch ID: 9362	TestNo: E7470	A E245.1	Analysis Date: 2/1/2017	SeqNo: 267040
Analyte		Result	PQL SPK va	lue SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		0.000994	0.000100 0.004	000 0	24.8 69.5 125	SMI
Sample ID:	: 1701106-046DMSD	SampType: MSD	TestCode: HG_C	T Units: mg/L	Prep Date: 2/1/2017	RunNo: 19930
Client ID:	BM-B-12-W	Batch ID: 9362	TestNo: E7470	A E245.1	Analysis Date: 2/1/2017	SeqNo: 267041
Analyte		Result	PQL SPK va	lue SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		0.00114	0.000100 0.004	000 0	28.5 69.5 125 0.0009940	13.8 20 SMI

Specialty Analytical

Qualifiers:

В

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

Page 39 of 69

WO#: **1701106**

Specialty	Analytical
-----------	------------

Client:	Parametrix												
Project:	Salmonberry -Botts Marsh / 2/32925007					TestCode: HG_CT							
Sample ID: 9362	CCV SampType	: CCV T	estCode: HG_CT	Units: mg/L		Prep Dat	te:		RunNo: 19930				
Client ID: CCV	Batch ID	: 9362	TestNo: E7470A	E245.1	Analysis Date: 2/1/2017			7	SeqNo: 267046				
Analyte		Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
Mercury		0.00402 0.000	0.004000	0	100	90	110						
Sample ID: 9362	CCV SampType	e: CCV T	estCode: HG_CT	Units: mg/L		Prep Dat	te:		RunNo: 199	930			
Client ID: CCV	Batch ID	: 9362	TestNo: E7470A	E245.1		Analysis Date: 2/1/2017			SeqNo: 267	7051			
Analyte		Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
Mercury		0.00365 0.000	0.004000	0	91.2	90	110						

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

Page 40 of 69

WO#: **1701106**

Client:	Parametrix					
Project:	Salmonberry	Botts Marsh / 27329	025007		TestCode: I	IG_CTS
Sample ID: MB-93	31	SampType: MBLK	TestCode: HG_C	S Units: mg/Kg	Prep Date: 1/26/2017	RunNo: 19869
Client ID: PBS		Batch ID: 9331	TestNo: SW 74	71B SW 7471B	Analysis Date: 1/27/2017	SeqNo: 266147
Analyte		Result	PQL SPK val	ue SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		ND	0.0167			
Sample ID: LCS-93	331	SampType: LCS	TestCode: HG_C	S Units: mg/Kg	Prep Date: 1/26/2017	RunNo: 19869
Client ID: LCSS		Batch ID: 9331	TestNo: SW 74	71B SW 7471B	Analysis Date: 1/27/2017	SeqNo: 266148
Analyte		Result	PQL SPK val	ue SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		0.376	0.0167 0.40	0 0	94.1 80 120	
Sample ID: 170110	06-003BDUP	SampType: DUP	TestCode: HG_C	S Units: mg/Kg	Prep Date: 1/26/2017	RunNo: 19869
Client ID: BM-B-	19-1.0	Batch ID: 9331	TestNo: SW 74	71B SW 7471B	Analysis Date: 1/27/2017	SeqNo: 266150
Analyte		Result	PQL SPK val	ue SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		0.0216	0.0162		0.02583	18.0 20
Sample ID: 170110	06-003BMS	SampType: MS	TestCode: HG_C	S Units: mg/Kg	Prep Date: 1/26/2017	RunNo: 19869
Client ID: BM-B-	19-1.0	Batch ID: 9331	TestNo: SW 74	71B SW 7471B	Analysis Date: 1/27/2017	SeqNo: 266151
Analyte		Result	PQL SPK val	ue SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		0.319	0.0166 0.39	0.02583	73.9 75 125	S

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

eded ND Not Detected at the Reporting Limit

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

Page 41 of 69

WO#: **1701106**

Client: Project:	Parametrix Salmonberr	y -Botts Marsh / 273292	25007		TestCode: H	IG_CTS		
Sample ID	1701106-003BMSD	SampType: MSD	TestCode: HG_CTS	Units: mg/Kg	Prep Date: 1/26/2017	RunNo: 19869		
Client ID:	BM-B-19-1.0	Batch ID: 9331	TestNo: SW 7471B	SW 7471B	Analysis Date: 1/27/2017	SeqNo: 266152		
Analyte		Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Mercury		0.334	0.0166 0.3982	0.02583	77.5 75 125 0.3194	4.55 20		
Sample ID	: 9331CCV	SampType: CCV	TestCode: HG_CTS	Units: mg/Kg	Prep Date:	RunNo: 19869		
Client ID:	CCV	Batch ID: 9331	TestNo: SW 7471B	SW 7471B	Analysis Date: 1/27/2017	SeqNo: 266159		
Analyte		Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Mercury		0.410	0.0167 0.4000	0	103 90 110			
Sample ID	: 9331CCV	SampType: CCV	TestCode: HG_CTS	Units: mg/Kg	Prep Date:	RunNo: 19869		
Client ID:	CCV	Batch ID: 9331	TestNo: SW 7471B	SW 7471B	Analysis Date: 1/27/2017	SeqNo: 266164		
Analyte		Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Mercury		0.422	0.0167 0.4000	0	106 90 110			
Sample ID	MB-9352	SampType: MBLK	TestCode: HG_CTS	Units: mg/Kg	Prep Date: 1/30/2017	RunNo: 19905		
Client ID:	PBS	Batch ID: 9352	TestNo: SW 7471B	SW 7471B	Analysis Date: 1/31/2017	SeqNo: 266601		
Analyte		Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Mercury		ND	0.0167					

Specialty Analytical

Qualifiers: B

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

n or analysis exceeded ND Not Dete

ND Not Detected at the Reporting Limit

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

Page 42 of 69

WO#: **1701106**

Client: Project:	Parametrix Salmonberr	y -Botts Marsh / 27329	25007				TestCode:	HG_CTS	
Sample ID	LCS-9352	SampType: LCS	TestCode: HG_CTS	Units: mg/Kg		Prep Date:	: 1/30/2017	RunNo: 19905	
Client ID:	LCSS	Batch ID: 9352	TestNo: SW 7471B	SW 7471B		Analysis Date:	: 1/31/2017	SeqNo: 266602	
Analyte		Result	PQL SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Va	al %RPD RPDLimit	Qual
Mercury		0.421	0.0167 0.4000	0	105	80	120		
Sample ID	: 1701106-010BDUP	SampType: DUP	TestCode: HG_CTS	Units: mg/Kg-dr	у	Prep Date:	: 1/30/2017	RunNo: 19905	
Client ID:	BM-B-16-6.0	Batch ID: 9352	TestNo: SW 7471B	SW 7471B		Analysis Date:	: 1/31/2017	SeqNo: 266604	
Analyte		Result	PQL SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref V	al %RPD RPDLimit	Qual
Mercury		ND	0.0235					0 0 20	
Sample ID	: 1701106-010BMS	SampType: MS	TestCode: HG_CTS	Units: mg/Kg-dr	у	Prep Date:	: 1/30/2017	RunNo: 19905	
Client ID:	BM-B-16-6.0	Batch ID: 9352	TestNo: SW 7471B	SW 7471B		Analysis Date	: 1/31/2017	SeqNo: 266605	
Analyte		Result	PQL SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Va	al %RPD RPDLimit	Qual
Mercury		0.486	0.0237 0.5668	0.02197	81.8	75	125		
Sample ID	: 1701106-010BMSD	SampType: MSD	TestCode: HG_CTS	Units: mg/Kg-dr	·у	Prep Date:	: 1/30/2017	RunNo: 19905	
Client ID:	BM-B-16-6.0	Batch ID: 9352	TestNo: SW 7471B	SW 7471B	-	Analysis Date	: 1/31/2017	SeqNo: 266606	
Analyte		Result	PQL SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref V	al %RPD RPDLimit	Qual
Mercury		0.517	0.0246 0.5902	0.02197	83.9	75	125 0.485	6.33 20	

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

nalysis exceeded ND Not Detected at

ND Not Detected at the Reporting Limit

O RSD is greater than RSDlimit

Specialty Analytical

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

Page 43 of 69

WO#: **1701106**

Specialty	Analytical
-----------	------------

Client:	Parametrix											
Project:	Salmonberry -Botts Ma	rsh / 2732925	5007					Т	estCode: H	IG_CTS		
Sample ID: 9352C	CV SampType	CCV	TestCod	e: HG_CTS	Units: mg/Kg		Prep Dat	te:		RunNo: 199	005	
Client ID: CCV	Batch ID:	9352	TestN	o: SW 7471B	SW 7471B		Analysis Dat	te: 1/31/20	17	SeqNo: 266	610	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		0.420	0.0167	0.4000	0	105	90	110				
Sample ID: 9352C	CV SampType	CCV	TestCod	e: HG_CTS	Units: mg/Kg		Prep Dat	te:		RunNo: 19905		
Client ID: CCV	Batch ID:	9352	TestN	o: SW 7471B	SW 7471B		Analysis Dat	te: 1/31/20	17	SeqNo: 266	615	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		0.383	0.0167	0.4000	0	95.8	90	110				

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

Page 44 of 69

WO#: **1701106**

Client: Project:	Parametrix Salmonberry	y -Botts Marsh / 2732	925007	TestCode: H	IGDIS_GW
Sample ID	MB-9362	SampType: MBLK	TestCode: HGDIS_GW Units: mg/L	Prep Date: 2/1/2017	RunNo: 19932
Client ID:	PBW	Batch ID: 9362	TestNo: SW7470A E245.1	Analysis Date: 2/1/2017	SeqNo: 267062
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		ND	0.000100		
Sample ID	: LCS-9362	SampType: LCS	TestCode: HGDIS_GW Units: mg/L	Prep Date: 2/1/2017	RunNo: 19932
Client ID:	LCSW	Batch ID: 9362	TestNo: SW7470A E245.1	Analysis Date: 2/1/2017	SeqNo: 267063
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		0.00386	0.000100 0.004000 0	96.5 85.4 116	
Sample ID	A1701106-046DDUP	SampType: DUP	TestCode: HGDIS_GW Units: mg/L	Prep Date:	RunNo: 19932
Client ID:	<u>ZZZZZZ</u>	Batch ID: 9362	TestNo: SW7470A E245.1	Analysis Date: 2/1/2017	SeqNo: 267068
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		ND	0.000100	0	0 20
Sample ID	A1701106-046DMS	SampType: MS	TestCode: HGDIS_GW Units: mg/L	Prep Date:	RunNo: 19932
Client ID:	<u>ZZZZZZ</u>	Batch ID: 9362	TestNo: SW7470A E245.1	Analysis Date: 2/1/2017	SeqNo: 267069
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		0.000994	0.000100 0.004000 0	24.8 69.5 125	SMI

Specialty Analytical

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

Page 45 of 69

WO#: **1701106**

Specialty	Analytical
-----------	------------

Client: Project:	Parametrix Salmonberry	-Botts Marsh / 2732	925007					Т	'estCode: E	IGDIS_GW		
Sample ID: A170 Client ID: ZZZZ	01106-046DMSD ZZZ	SampType: MSD Batch ID: 9362	TestCo Testl	de: HGDIS_G\ No: SW7470A	W Units: mg/L E245.1		Prep Da Analysis Da	te: te: 2/1/201	7	RunNo: 199 SeqNo: 267	932 7070	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		0.00114	0.000100	0.004000	0	28.5	69.5	125	0.0009940	13.8	20	SMI
Sample ID: 9362 Client ID: CCV	CCV	SampType: CCV Batch ID: 9362	TestCo Testl	de: HGDIS_GN No: SW7470A	W Units: mg/L E245.1		Prep Da Analysis Da	te: te: 2/1/201	7	RunNo: 199 SeqNo: 267	932 7071	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		0.00402	0.000100	0.004000	0	100	90	110				

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

Page 46 of 69

WO#: **1701106**

Client: Pa Project: Sa	rametrix lmonberry -Botts Marsh / 2732925	5007		TestCode:	NWTPHDX_S
Sample ID: CCV Client ID: CCV	SampType: CCV Batch ID: 9314	TestCode: NWTPHDX_S TestNo: NWTPH-Dx	Units: mg/Kg SW3550C	Prep Date: Analysis Date: 1/26/2017	RunNo: 19844 SeaNo: 265680
Analyte	Result	PQL SPK value SPF	K Ref Val %REC	LowLimit HighLimit RPD Ref Va	%RPD RPDLimit Qual
Diesel Lube Oil	936 513	15.0999.050.0499.5	0 93.6 0 103	85 115 85 115	
Sample ID: MB-9314 Client ID: PBS	SampType: MBLK Batch ID: 9314	TestCode: NWTPHDX_S TestNo: NWTPH-Dx	Units: mg/Kg SW3550C	Prep Date: 1/25/2017 Analysis Date: 1/25/2017	RunNo: 19844 SeqNo: 265681
Analyte	Result	PQL SPK value SPI	K Ref Val %REC	LowLimit HighLimit RPD Ref Va	%RPD RPDLimit Qual
Diesel Lube Oil Surr: o-Terphenyl	ND ND 26.3	15.0 50.0 33.30	79.0	50 150	
Sample ID: LCS-9314	SampType: LCS	TestCode: NWTPHDX_S	Units: mg/Kg	Prep Date: 1/25/2017	RunNo: 19844
Client ID: LCSS	Batch ID: 9314	TestNo: NWTPH-Dx	SW3550C	Analysis Date: 1/25/2017	SeqNo: 265682
Analyte	Result	PQL SPK value SPI	K Ref Val %REC	LowLimit HighLimit RPD Ref Va	%RPD RPDLimit Qual
Diesel Lube Oil	164 162	15.0166.550.0166.5	0 98.3 0 97.5	76.312569.9127	
Sample ID: 1701105-0	01ADUP SampType: DUP	TestCode: NWTPHDX_S	Units: mg/Kg-dry	Prep Date: 1/25/2017	RunNo: 19844
Client ID: ZZZZZZ	Batch ID: 9314	TestNo: NWTPH-Dx	SW3550C	Analysis Date: 1/25/2017	SeqNo: 265685
Analyte	Result	PQL SPK value SP	K Ref Val %REC	LowLimit HighLimit RPD Ref Va	%RPD RPDLimit Qual
Qualifiers: B An O RS	nalyte detected in the associated Method B SD is greater than RSDlimit	lank H Holding tim R RPD outside	nes for preparation or analys le accepted recovery limits	is exceeded ND Not Detected at S Spike Recovery	the Reporting Limit Page 47 of 6' outside accepted reco

1701106 WO#:

Client: Project:	Parametrix Salmonberr	y -Botts Marsh / 27329250	07				T	'estCode: N	WTPHDX_	S	
Sample ID:	1701105-001ADUP	SampType: DUP	TestCode: NWTPHDX	_ S Units: mg/Kg-	dry	Prep Date	e: 1/25/20)17	RunNo: 198	344	
Client ID:	ZZZZZZ	Batch ID: 9314	TestNo: NWTPH-D	sw3550C		Analysis Date	: 1/25/20	17	SeqNo: 26	5685	
Analyte		Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel		ND	21.8					0	0	20	RF
Lube Oil		ND	72.6					0	0	20	RF
Sample ID:	CCV	SampType: CCV	TestCode: NWTPHDX	_S Units: mg/Kg		Prep Date	:		RunNo: 198	344	
Client ID:	CCV	Batch ID: 9314	TestNo: NWTPH-Da	G SW3550C		Analysis Date	e: 1/26/20	17	SeqNo: 26	5696	
Analyte		Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel		923	15.0 999.0	0	92.4	85	115				
Lube Oil		486	50.0 499.5	0	97.3	85	115				
Sample ID:	ССВ	SampType: CCB	TestCode: NWTPHDX	_S Units: mg/Kg		Prep Date	:		RunNo: 198	344	
Client ID:	ССВ	Batch ID: 9314	TestNo: NWTPH-D	G SW3550C		Analysis Date	e: 1/26/20	17	SeqNo: 26	5697	
Analyte		Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel		ND	15.0								
Lube Oil		ND	50.0								
Surr: o-Te	erphenyl	26.0	33.30		78.2	50	150				
Sample ID:	CCV	SampType: CCV	TestCode: NWTPHDX	S Units: mg/Kg		Prep Date	:		RunNo: 198	344	
Client ID:	CCV	Batch ID: 9314	TestNo: NWTPH-D	G SW3550C		Analysis Date	: 1/25/20	17	SeqNo: 26	5703	
Analyte		Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Qualifiers:	B Analyte detecO RSD is greate	ted in the associated Method Blar r than RSDlimit	nk H Holdin R RPD or	g times for preparation utside accepted recover	or analys	is exceeded	ND I S S	Not Detected at th Spike Recovery ou	e Reporting Lim itside accepted 1	iit Pag	ge 48 of 69

Specialty Analytical

WO#: **1701106**

Client: Project:	Parametrix Salmonberr	y -Botts Marsh / 273292	5007						Т	'estCode: N	WTPHDX_	S	
Sample ID: CCV Client ID: CCV		SampType: CCV Batch ID: 9314	TestCoo TestN	TestCode: NWTPHDX_S Units: mg/Kg TestNo: NWTPH-Dx SW3550C			Prep Date: Analysis Date: 1/25/2017				RunNo: 19844 SeqNo: 265703		
Analyte		Result	PQL	SPK value	SPK	Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel Lube Oil		1190 664	15.0 50.0	1332 666.0		0 0	89.3 99.6	85 85	115 115				
Sample ID: CCV Client ID: CCV		SampType: CCV Batch ID: 9314	TestCoo TestN	de: NWTPHD) No: NWTPH-D	(_S x \$	Units: mg/Kg SW3550C		Prep Dat Analysis Dat	te: te: 1/26/20	117	RunNo: 19 SeqNo: 26	344 6103	
Analyte		Result	PQL	SPK value	SPK	Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel Lube Oil		944 452	15.0 50.0	999.0 499.5		0 0	94.5 90.4	85 85	115 115				
Sample ID: CCB	-9314	SampType: CCB	TestCo	de: NWTPHD)	(_S	Units: mg/Kg		Prep Dat	te:		RunNo: 19	344	
Client ID: CCB		Batch ID: 9314	Test	No: NWTPH-D	x s	SW3550C		Analysis Dat	te: 1/26/20	17	SeqNo: 26	6104	
Analyte		Result	PQL	SPK value	SPK	Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel Lube Oil Surr: o-Terphe	nyl	ND ND 26.4	15.0 50.0	33.30			79.2	50	150				
Sample ID: 1701	106-015ADUP	SampType: DUP	TestCo	de: NWTPHD)	(_S	Units: mg/Kg·	-dry	Prep Dat	te: 1/25/20	17	RunNo: 19	344	
Client ID: BM-E	3-14-1.0	Batch ID: 9314	Test	No: NWTPH-D	x S	SW3550C		Analysis Dat	te: 1/27/20	17	SeqNo: 26	6108	
Analyte		Result	PQL	SPK value	SPK	Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Qualifiers: B	Analyte detecO RSD is greate	ted in the associated Method B r than RSDlimit	Blank	H Holdin R RPD o	g time utside	es for preparation	n or analys ery limits	is exceeded	ND I S S	Not Detected at the Spike Recovery on	e Reporting Lin	nit Pag	ge 49 of 69

WO#: **1701106**

Specialty	Analytical
-----------	------------

Client: Project:	Parametrix Salmonberry	y -Botts Marsh / 27329250	07					Т	estCode:	NWTPHDX_	5	
Sample ID: Client ID:	1701106-015ADUP BM-B-14-1.0	SampType: DUP Batch ID: 9314	TestCod TestN	le: NWTPHDX_ lo: NWTPH-Dx	S Units: mg/Kg- SW3550C	dry	Prep Da Analysis Da	te: 1/25/20 te: 1/27/20	17 17	RunNo: 198 SeqNo: 266	44 108	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel Lube Oil		ND ND	16.7 55.7						0 0	0 0	20 20	RF RF
Sample ID:	CCV	SampType: CCV	TestCod	e: NWTPHDX_	S Units: mg/Kg		Prep Da	te:		RunNo: 198	44	
Client ID:	CCV	Batch ID: 9314	TestN	o: NWTPH-Dx	SW3550C		Analysis Da	te: 1/27/20	17	SeqNo: 266	110	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel Lube Oil		1240 585	15.0 50.0	1332 666.0	0 0	92.7 87.8	85 85	115 115				
Sample ID:	CCV	SampType: CCV	TestCod	e: NWTPHDX_	S Units: mg/Kg		Prep Da	te:		RunNo: 198	67	
Client ID:	ссу	Batch ID: 9325	TestN	o: NWTPH-Dx	SW3550C		Analysis Da	te: 1/26/20	17	SeqNo: 266	111	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel Lube Oil		944 452	15.0 50.0	999.0 499.5	0 0	94.5 90.4	85 85	115 115				
Sample ID:	MB-9325	SampType: MBLK	TestCod	e: NWTPHDX_	S Units: mg/Kg		Prep Da	te: 1/25/20	17	RunNo: 198	67	
Client ID:	PBS	Batch ID: 9325	TestN	o: NWTPH-Dx	SW3550C		Analysis Da	te: 1/26/20	17	SeqNo: 266	112	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel		ND	15.0									
Qualifiers:	B Analyte detectO RSD is greater	ted in the associated Method Blar r than RSDlimit	ık	H Holding R RPD ou	times for preparatior tside accepted recove	n or analys ry limits	is exceeded	ND N S S	Not Detected at Spike Recovery	the Reporting Lim	it Page	e 50 of 69

WO#: **1701106**

Client: Project:	Parametrix Salmonberr	y -Botts Marsh / 2732925	007		TestCode: N	WTPHDX_S
Sample ID: Client ID:	MB-9325 PBS	SampType: MBLK Batch ID: 9325	TestCode: NWTPHDX_S Units TestNo: NWTPH-Dx SW3	mg/KgPrep Date:550CAnalysis Date:	1/25/2017 1/26/2017	RunNo: 19867 SeqNo: 266112
Analyte		Result	PQL SPK value SPK Ref	Val %REC LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit Qual
Lube Oil Surr: o-T	erphenyl	ND 26.4	50.0 33.30	79.2 50	150	
Sample ID: Client ID:	LCS-9325 LCSS	SampType: LCS Batch ID: 9325	TestCode: NWTPHDX_S Units TestNo: NWTPH-Dx SW3	rep Date: 550C Analysis Date:	1/25/2017 1/26/2017	RunNo: 19867 SeqNo: 266113
Analyte		Result	PQL SPK value SPK Ref	Val %REC LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit Qual
Diesel Lube Oil		166 150	15.0166.550.0166.5	0 99.6 76.3 0 90.1 69.9	125 127	
Sample ID: Client ID:	1701106-038ADUP BM-B-6-1.0	SampType: DUP Batch ID: 9325	TestCode: NWTPHDX_S Units TestNo: NWTPH-Dx SW3	mg/Kg-dryPrep Date:550CAnalysis Date:	1/25/2017 1/27/2017	RunNo: 19867 SeqNo: 266122
Analyte		Result	PQL SPK value SPK Ref	Val %REC LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit Qual
Diesel Lube Oil		ND 78.7	17.9 59.7		0 44.26	0 20 RF 56.0 20 RF
Sample ID: Client ID:	ccv ccv	SampType: CCV Batch ID: 9325	TestCode: NWTPHDX_S Units TestNo: NWTPH-Dx SW3	mg/Kg Prep Date: 550C Analysis Date:	1/27/2017	RunNo: 19867 SeqNo: 266123
Analyte		Result	PQL SPK value SPK Ref	Val %REC LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit Qual
Diesel		1240	15.0 1332	0 92.7 85	115	
Qualifiers:	B Analyte detecO RSD is greate	ted in the associated Method Bla er than RSDlimit	nk H Holding times for R RPD outside accep	preparation or analysis exceeded oted recovery limits	ND Not Detected at the S Spike Recovery out	Reporting Limit Page 51 of 69 side accepted reco

1701106 WO#:

Page 52 of 69

Cliente	Damanatria				
Project:	Salmonberr	ry -Botts Marsh / 273292	5007	TestCod	le: NWTPHDX_S
Sample ID:	CCV	SampType: CCV	TestCode: NWTPHDX_S Units: mg	/Kg Prep Date:	RunNo: 19867
Client ID:	CCV	Batch ID: 9325	TestNo: NWTPH-Dx SW3550C	Analysis Date: 1/27/2017	SeqNo: 266123
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD R	ef Val %RPD RPDLimit Qual
Lube Oil		585	50.0 666.0 0	87.8 85 115	
Sample ID:	1701149-004ADUP	SampType: DUP	TestCode: NWTPHDX_S Units: mg	/Kg-dry Prep Date: 1/26/2017	RunNo: 19867
Client ID:	<u>ZZZZZZ</u>	Batch ID: 9325	TestNo: NWTPH-Dx SW3550C	Analysis Date: 1/27/2017	SeqNo: 266355
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD R	ef Val %RPD RPDLimit Qual
Diesel Lube Oil		ND ND	16.7 55.6		0 200 20 RF 0 0 20
Sample ID:	CCV	SampType: CCV	TestCode: NWTPHDX_S Units: mg	/Kg Prep Date:	RunNo: 19867
Client ID:	CCV	Batch ID: 9325	TestNo: NWTPH-Dx SW3550C	Analysis Date: 1/27/2017	SeqNo: 266364
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD R	.ef Val %RPD RPDLimit Qual
Diesel		963	15.0 999.0 0	96.4 85 115	
Lube Oil		451	50.0 499.5 0	90.2 85 115	
Sample ID:	CCB-9325	SampType: CCB	TestCode: NWTPHDX_S Units: mg	/Kg Prep Date:	RunNo: 19867
Client ID:	ССВ	Batch ID: 9325	TestNo: NWTPH-Dx SW3550C	Analysis Date: 1/27/2017	SeqNo: 266365
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD R	ef Val %RPD RPDLimit Qual
Diesel		ND	15.0		
Lube Oil		ND	50.0		
Qualifiers:	B Analyte detec	ted in the associated Method H	Blank H Holding times for prepar	ation or analysis exceeded ND Not Deter	cted at the Reporting Limit Page 52 o

Specialty Analytical

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

1701106 WO#:

Client: Project:	Parametrix Salmonberry -	Botts Marsh / 27329250	07					TestCode:	NWTPHDX_S	
Sample ID: CCB- Client ID: CCB	9325 S	SampType: CCB Batch ID: 9325	TestCoo TestN	de: NWTPHD) No: NWTPH-D	(_S Units: mg/Kg x SW3550C		Prep Date Analysis Date	e: e: 1/27/2017	RunNo: 19867 SeqNo: 266365	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref V	al %RPD RPDLimit	Qual
Surr: o-Terpher	yl	26.6		33.30		79.8	50	150		
Sample ID: CCV	S	SampType: CCV	TestCo	de: NWTPHD)	(_S Units: mg/Kg		Prep Date	e:	RunNo: 19949	
Client ID: CCV		Batch ID: 9344	Test	lo: NWTPH-D	x SW3550C		Analysis Date	e: 1/30/2017	SeqNo: 267271	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref V	al %RPD RPDLimit	Qual
Diesel Lube Oil		1010 474	15.0 50.0	999.0 499.5	0 0	101 94.9	85 85	115 115		
Sample ID: MB-9	344 S	SampType: MBLK	TestCo	de: NWTPHD)	(_S Units: mg/Kg		Prep Date	e: 1/30/2017	RunNo: 19949	
Client ID: PBS		Batch ID: 9344	Test	lo: NWTPH-D	x SW3550C		Analysis Date	e: 1/30/2017	SeqNo: 267272	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref V	al %RPD RPDLimit	Qual
Diesel Lube Oil Surr: o-Terpher	yl	ND ND 25.4	15.0 50.0	33.30		76.4	50	150		
Sample ID: LCS-9	344 S	SampType: LCS	TestCo	de: NWTPHD)	(_S Units: mg/Kg		Prep Date	e: 1/30/2017	RunNo: 19949	
Client ID: LCSS		Batch ID: 9344	Test	lo: NWTPH-D	x SW3550C		Analysis Date	e: 1/30/2017	SeqNo: 267273	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref V	al %RPD RPDLimit	Qual
Diesel		168	15.0	166.5	0	101	76.3	125		
Qualifiers: B	Analyte detected RSD is greater th	in the associated Method Bla an RSDlimit	nk	H Holdin R RPD o	g times for preparation utside accepted recov	on or analys ery limits	is exceeded	ND Not Detected a S Spike Recover	at the Reporting Limit Pag	e 53 of 6

Specialty Analytical

1701106 WO#:

Client: Project:	Parametrix Salmonberry	-Botts Marsh / 273292500	07						T	SestCode: N	NWTPHDX_	S	
Sample ID: LC: Client ID: LC	S-9344 SS	SampType: LCS Batch ID: 9344	TestCoo TestN	de: NWTPHDX No: NWTPH-D	(_S x	Units: mg/Kg SW3550C		Prep Dat Analysis Dat	e: 1/30/20	017 017	RunNo: 19 SeqNo: 26	949 7273	
Analyte		Result	PQL	SPK value	SP	K Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lube Oil		155	50.0	166.5		0	92.8	69.9	127				
Sample ID: 170	01091-015ADUP	SampType: DUP	TestCoo	de: NWTPHDX	(_S	Units: mg/Kg-o	dry	Prep Dat	e: 1/30/20)17	RunNo: 19	949	
Client ID: ZZ	ZZZZ	Batch ID: 9344	TestN	lo: NWTPH-D	x	SW3550C		Analysis Dat	e: 1/30/20)17	SeqNo: 26	7278	
Analyte		Result	PQL	SPK value	SPł	K Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel		ND	22.7							0	0	20	
Lube Oil		ND	75.6							0	0	20	
Sample ID: CC	:V	SampType: CCV	TestCo	de: NWTPHDX	(_S	Units: mg/Kg		Prep Dat	e: 1/30/20)17	RunNo: 19	949	
Client ID: CC	SV	Batch ID: 9344	TestN	lo: NWTPH-D	x	SW3550C		Analysis Dat	e: 2/1/20 1	7	SeqNo: 26	7280	
Analyte		Result	PQL	SPK value	SPł	K Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel		905	15.0	999.0		0	90.6	85	115				
Lube Oil		460	50.0	499.5		0	92.1	85	115				
Sample ID: CC	B-9344	SampType: CCB	TestCoo	de: NWTPHDX	(_S	Units: mg/Kg		Prep Dat	e: 1/30/20)17	RunNo: 19	949	
Client ID: CC	В	Batch ID: 9344	TestN	lo: NWTPH-D	x	SW3550C		Analysis Dat	e: 2/1/20 1	7	SeqNo: 26	7281	
Analyte		Result	PQL	SPK value	SPł	K Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel		ND	15.0										
Lube Oil		ND	50.0										

WO#: **1701106**

Client: Project:	Parametrix Salmonberr	y -Botts Marsh / 2732925	007		TestCod	e: NWTPHDX_S
Sample ID:	CCB-9344	SampType: CCB	TestCode: NWTPHDX_S Unit	s: mg/Kg	Prep Date: 1/30/2017	RunNo: 19949
Client ID:	ССВ	Batch ID: 9344	TestNo: NWTPH-Dx SW3	3550C	Analysis Date: 2/1/2017	SeqNo: 267281
Analyte		Result	PQL SPK value SPK Re	f Val %REC	LowLimit HighLimit RPD Re	of Val %RPD RPDLimit Qual
Surr: o-T	erphenyl	25.5	33.30	76.5	50 150	
Sample ID:	1701106-010ADUP	SampType: DUP	TestCode: NWTPHDX_S Unit	s: mg/Kg-dry	Prep Date: 1/31/2017	RunNo: 19949
Client ID:	BM-B-16-6.0	Batch ID: 9344	TestNo: NWTPH-Dx SW3	3550C	Analysis Date: 2/1/2017	SeqNo: 267285
Analyte		Result	PQL SPK value SPK Re	f Val %REC	LowLimit HighLimit RPD Re	of Val %RPD RPDLimit Qual
Diesel		ND	22.2			0 0 20
Lube Oil		ND	73.9			0 0 20
Sample ID:	ссу	SampType: CCV	TestCode: NWTPHDX_S Unit	s: mg/Kg	Prep Date:	RunNo: 19949
Sample ID: Client ID:	ccv ccv	SampType: CCV Batch ID: 9344	TestCode: NWTPHDX_S Unit TestNo: NWTPH-Dx SW3	s: mg/Kg 3550C /	Prep Date: Analysis Date: 2/1/2017	RunNo: 19949 SeqNo: 267290
Sample ID: Client ID: Analyte	ccv ccv	SampType: CCV Batch ID: 9344 Result	TestCode: NWTPHDX_S Unit TestNo: NWTPH-Dx SW3 PQL SPK value SPK Re	rs: mg/Kg 3550C / f Val %REC	Prep Date: Analysis Date: 2/1/2017 LowLimit HighLimit RPD Re	RunNo: 19949 SeqNo: 267290 of Val %RPD RPDLimit Qual
Sample ID: Client ID: Analyte Diesel	CCV CCV	SampType: CCV Batch ID: 9344 Result 1300	TestCode: NWTPHDX_S Unit TestNo: NWTPH-Dx SW3 PQL SPK value SPK Rei 15.0 1332	s: mg/Kg 3550C f Val %REC 0 97.2	Prep Date: Analysis Date: 2/1/2017 LowLimit HighLimit RPD Re 85 115	RunNo: 19949 SeqNo: 267290 of Val %RPD RPDLimit Qual
Sample ID: Client ID: Analyte Diesel Lube Oil	CCV CCV	SampType: CCV Batch ID: 9344 Result 1300 595	TestCode:NWTPHDX_SUnitTestNo:NWTPH-DxSW3PQLSPK valueSPK Ref15.0133250.0666.0	s: mg/Kg s550C / f Val %REC 0 97.2 0 89.4	Prep Date: Analysis Date: 2/1/2017 LowLimit HighLimit RPD Re 85 115 85 115	RunNo: 19949 SeqNo: 267290 of Val %RPD RPDLimit Qual
Sample ID: Client ID: Analyte Diesel Lube Oil Sample ID:	CCV CCV MB-9365	SampType: CCV Batch ID: 9344 Result 1300 595 SampType: MBLK	TestCode: NWTPHDX_S Unit TestNo: NWTPH-Dx SW3 PQL SPK value SPK Ref 15.0 1332 50.0 50.0 666.0 TestCode: NWTPHDX_S	s: mg/Kg 5550C / f Val %REC 0 97.2 0 89.4 s: mg/Kg	Prep Date: Analysis Date: 2/1/2017 LowLimit HighLimit RPD Re 85 115 85 115 Prep Date: 2/1/2017	RunNo: 19949 SeqNo: 267290 of Val %RPD RPDLimit Qual RunNo: 19956
Sample ID: Client ID: Analyte Diesel Lube Oil Sample ID: Client ID:	CCV CCV MB-9365 PBS	SampType: CCV Batch ID: 9344 Result 1300 595 SampType: MBLK Batch ID: 9365	TestCode: NWTPHDX_S Unit TestNo: NWTPH-Dx SW3 PQL SPK value SPK Ref 15.0 1332 50.0 50.0 666.0 TestCode: NWTPHDX_S TestCode: NWTPHDX_S Unit TestNo: NWTPH-Dx SW3	s: mg/Kg s550C / f Val %REC 0 97.2 0 89.4 s: mg/Kg s550C /	Prep Date: Analysis Date: 2/1/2017 LowLimit HighLimit RPD Re 85 115 85 115 Prep Date: 2/1/2017 Analysis Date: 2/2/2017	RunNo: 19949 SeqNo: 267290 of Val %RPD RPDLimit Qual RunNo: 19956 SeqNo: 267349
Sample ID: Client ID: Analyte Diesel Lube Oil Sample ID: Client ID: Analyte	CCV CCV MB-9365 PBS	SampType: CCV Batch ID: 9344 Result 1300 595 SampType: MBLK Batch ID: 9365 Result	TestCode: NWTPHDX_S Unit TestNo: NWTPH-Dx SW3 PQL SPK value SPK Ref 15.0 1332 50.0 50.0 666.0 TestCode: NWTPHDX_S TestNo: NWTPH-Dx SW3 PQL SPK value SPK Ref SPU SPK value SPK Ref	s: mg/Kg s550C / f Val %REC 0 97.2 0 89.4 s: mg/Kg s550C / f Val %REC	Prep Date: Analysis Date: 2/1/2017 LowLimit HighLimit RPD Re 85 115 85 115 Prep Date: 2/1/2017 Analysis Date: 2/2/2017 LowLimit HighLimit RPD Re	RunNo: 19949 SeqNo: 267290 of Val %RPD RPDLimit Qual RunNo: 19956 SeqNo: 267349 of Val %RPD RPDLimit Qual
Sample ID: Client ID: Analyte Diesel Lube Oil Sample ID: Client ID: Analyte Diesel	CCV CCV MB-9365 PBS	SampType: CCV Batch ID: 9344 Result 1300 595 SampType: MBLK Batch ID: 9365 Result ND	TestCode: NWTPHDX_S Unit TestNo: NWTPH-Dx SW3 PQL SPK value SPK Ref 15.0 1332 50.0 TestCode: NWTPHDX_S Unit TestNo: NWTPHDX_S Unit TestNo: NWTPHDX_S SW3 PQL SPK value SPK Ref 15.0 SPK value SPK Ref 15.0 SPK value SPK Ref 15.0 SPK value SPK Ref	s: mg/Kg 5550C / f Val %REC 0 97.2 0 89.4 s: mg/Kg 5550C / f Val %REC	Prep Date: Analysis Date: 2/1/2017 LowLimit HighLimit RPD Re 85 115 85 115 Prep Date: 2/1/2017 Analysis Date: 2/2/2017 LowLimit HighLimit RPD Re	RunNo: 19949 SeqNo: 267290 of Val %RPD RPDLimit Qual RunNo: 19956 SeqNo: 267349 of Val %RPD RPDLimit Qual
Sample ID: Client ID: Analyte Diesel Lube Oil Sample ID: Client ID: Analyte Diesel Lube Oil	CCV CCV MB-9365 PBS	SampType: CCV Batch ID: 9344 Result 1300 595 SampType: MBLK Batch ID: 9365 Result ND ND	TestCode: NWTPHDX_S Unit TestNo: NWTPH-Dx SW3 PQL SPK value SPK Ref 15.0 1332 50.0 50.0 666.0 Iteration TestCode: NWTPHDX_S Unit TestNo: NWTPHDX_S SW3 PQL SPK value SPK Ref 15.0 50.0 S0.0	s: mg/Kg 5550C / f Val %REC 0 97.2 0 89.4 (s: mg/Kg 5550C / f Val %REC	Prep Date: Analysis Date: 2/1/2017 LowLimit HighLimit RPD Re 85 115 85 115 Prep Date: 2/1/2017 Analysis Date: 2/2/2017 LowLimit HighLimit RPD Re	RunNo: 19949 SeqNo: 267290 of Val %RPD RPDLimit Qual RunNo: 19956 SeqNo: 267349 of Val %RPD RPDLimit Qual

WO#: **1701106**

Client: Project:	Paramet Salmon	trix berry -Botts Marsh / 273292	5007		TestCode:	NWTPHDX_S
Sample ID	: MB-9365	SampType: MBLK	TestCode: NWTPHDX_S Units: mg/Kg	Prep Da	te: 2/1/2017	RunNo: 19956
Client ID:	PBS	Batch ID: 9365	TestNo: NWTPH-Dx SW3550C	Analysis Da	te: 2/2/2017	SeqNo: 267349
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Va	al %RPD RPDLimit Qual
Surr: o-1	Terphenyl	25.6	33.30	77.0 50	150	
Sample ID	: LCS-9365	SampType: LCS	TestCode: NWTPHDX_S Units: mg/Kg	j Prep Da	te: 2/1/2017	RunNo: 19956
Client ID:	LCSS	Batch ID: 9365	TestNo: NWTPH-Dx SW3550C	Analysis Da	te: 2/2/2017	SeqNo: 267350
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Va	al %RPD RPDLimit Qual
Diesel		168	15.0 166.5 0	101 76.3	125	
Lube Oil		156	50.0 166.5 0	93.7 69.9	127	
Sample ID	: CCV	SampType: CCV	TestCode: NWTPHDX_S Units: mg/Kg) Prep Da	te:	RunNo: 19956
Client ID:	CCV	Batch ID: 9365	TestNo: NWTPH-Dx SW3550C	Analysis Da	te: 2/2/2017	SeqNo: 267365
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Va	al %RPD RPDLimit Qual
Diesel		1370	15.0 1332 0	103 85	115	
Lube Oil		626	50.0 666.0 0	94.0 85	115	
Sample ID	: 1701173-002ADU	JP SampType: DUP	TestCode: NWTPHDX_S Units: mg/Kg	j-dry Prep Da	te: 2/1/2017	RunNo: 19956
Client ID:	ZZZZZZ	Batch ID: 9365	TestNo: NWTPH-Dx SW3550C	Analysis Da	te: 2/2/2017	SeqNo: 267431
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Va	al %RPD RPDLimit Qual
Diesel		ND	17.4			0 0 20 A3
Lube Oil		492	58.0		578.	5 16.1 20
Qualifiers:	B Analyte ofO RSD is g	letected in the associated Method E reater than RSDlimit	Blank H Holding times for preparation R RPD outside accepted recov	on or analysis exceeded very limits	ND Not Detected a S Spike Recover	t the Reporting Limit Page 56 of 69

WO#: **1701106**

Specialty	Analytical
L V	•

Client: Project:	Parametrix Salmonberry	y -Botts Marsh / 27329250	007					Т	estCode: N	WTPHDX_	S	
Sample ID: 1 Client ID: 2	1701173-002ADUP ZZZZZZ	SampType: DUP Batch ID: 9365	TestCoo TestN	de: NWTPHD) No: NWTPH-D	K_S Units: mg/Kg- x SW3550C	dry	Prep Da Analysis Da	te: 2/1/201 te: 2/2/201	7 7	RunNo: 199 SeqNo: 267	956 7431	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sample ID: 0	ccv	SampType: CCV	TestCo	de: NWTPHD)	K_S Units: mg/Kg		Prep Da	te:		RunNo: 199	56	
Client ID: 0	ccv	Batch ID: 9365	Test	No: NWTPH-D	x SW3550C		Analysis Da	te: 2/2/201	7	SeqNo: 267	433	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel		944	15.0	999.0	0	94.5	85	115				
Lube Oil		460	50.0	499.5	0	92.1	85	115				

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

Page 57 of 69

WO#: **1701106**

Client: Project:	Parametrix Salmonberry	7 -Botts Marsh / 2732925	5007					TestCode:	NWTPHDXLL_W	
Sample ID: CO	cv	SampType: CCV	TestCo	de: NWTPHDXLL	Units: mg/L		Prep Date	e:	RunNo: 19843	
Client ID: CO	cv	Batch ID: 9298	TestN	lo: NWTPH-Dx	SW3510B		Analysis Date	e: 1/25/2017	SeqNo: 265637	
Analyte		Result	PQL	SPK value S	PK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Diesel		5.45	0.0800	6.000	0	90.9	85	115		
Hydraulic Oil		3.97	0.200	4.000	0	99.2	85	115		
Lube Oil		3.00	0.200	3.000	0	100	85	115		
Sample ID: M	B-9298	SampType: MBLK	TestCoo	de: NWTPHDXLL	Units: mg/L		Prep Date	e: 1/23/2017	RunNo: 19843	
Client ID: PE	BW	Batch ID: 9298	TestN	lo: NWTPH-Dx	SW3510B		Analysis Date	e: 1/25/2017	SeqNo: 265638	
Analyte		Result	PQL	SPK value S	PK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Diesel		ND	0.0800							
Hydraulic Oil		ND	0.200							
Lube Oil		ND	0.200							
Surr: o-Terp	ohenyl	0.151		0.2000		75.6	50	150		
Sample ID: LC	CS-9298	SampType: LCS	TestCoo	de: NWTPHDXLL	Units: mg/L		Prep Date	e: 1/23/2017	RunNo: 19843	
Client ID: LC	CSW	Batch ID: 9298	TestN	lo: NWTPH-Dx	SW3510B		Analysis Date	e: 1/25/2017	SeqNo: 265639	
Analyte		Result	PQL	SPK value S	PK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Diesel		0.912	0.0800	1.000	0	91.2	60.7	121		
Lube Oil		0.908	0.200	1.000	0	90.8	64	126		

Specialty Analytical

Qualifiers: B

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

or analysis exceeded ND Not Detected

ND Not Detected at the Reporting Limit

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

Page 58 of 69

WO#: **1701106**

Specialty	Analytical
-----------	------------

Client:	Parametrix											
Project:	Salmonberry	-Botts Marsh / 27329	925007					Т	estCode: N	WTPHDXI	L_W	
Sample ID: LCS Client ID: LCS	D-9298 S02	SampType: LCSD Batch ID: 9298	TestCoo TestN	de: NWTPHD) lo: NWTPH-D	(LL Units: mg/L x SW3510B		Prep Da Analysis Da	te: 1/23/20 te: 1/25/20	17	RunNo: 198 SeqNo: 26 5	343 5640	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel Lube Oil		0.931 1.00	0.0800 0.200	1.000 1.000	0 0	93.1 100	60.7 64	121 126	0.9122 0.9082	2.05 10.1	20 20	
Sample ID: CCV	1	SampType: CCV	TestCoo	de: NWTPHD)	(LL Units: mg/L		Prep Da	te:		RunNo: 198	343	
Client ID: CCV	1	Batch ID: 9298	Test	lo: NWTPH-D	x SW3510B		Analysis Da	te: 1/25/20	17	SeqNo: 265	5648	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel		7.15	0.0800	8.000	0	89.3	85	115				
Hydraulic Oil		4.27	0.200	4.000	0	107	85	115				
Lube Oil		3.94	0.200	4.000	0	98.6	85	115				

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

Page 59 of 69

WO#: 1701106

06-Feb-17

Sample ID: CCV MSSWS-1410	SampType: CCV	TestCod	e: PAHLL_S	Units: µg/Kg		Prep Date:		RunNo: 199	925	
Client ID: CCV	Batch ID: 9346	TestN	o: SW8270D	SW 3550C		Analysis Date:	1/30/2017	SeqNo: 267	7025	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Va	l %RPD	RPDLimit	Qual
I-Methylnaphthalene	137	3.33	133.3	0	103	80	120			
2-Methylnaphthalene	108	3.33	133.3	0	81.0	80	120			
Acenaphthene	129	3.33	133.3	0	96.5	80	120			
Acenaphthylene	123	3.33	133.3	0	92.5	80	120			
Anthracene	115	3.33	133.3	0	86.0	80	120			
Benz(a)anthracene	117	3.33	133.3	0	87.5	80	120			
Benzo(a)pyrene	116	3.33	133.3	0	87.0	80	120			
Senzo(b)fluoranthene	133	3.33	133.3	0	100	80	120			
enzo(g,h,i)perylene	114	3.33	133.3	0	85.5	80	120			
enzo(k)fluoranthene	131	3.33	133.3	0	98.5	80	120			
Chrysene	107	3.33	133.3	0	80.5	80	120			
bibenz(a,h)anthracene	130	3.33	133.3	0	97.5	80	120			
luoranthene	107	3.33	133.3	0	80.5	80	120			
luorene	125	3.33	133.3	0	93.5	80	120			
ndeno(1,2,3-cd)pyrene	113	3.33	133.3	0	84.5	80	120			
laphthalene	111	3.33	133.3	0	83.5	80	120			
Phenanthrene	112	3.33	133.3	0	84.0	80	120			
Pyrene	112	3.33	133.3	0	84.0	80	120			
ample ID: MB-9346	SampType: MBLK	TestCod	e: PAHLL_S	Units: µg/Kg		Prep Date:	1/30/2017	RunNo: 199	925	
lient ID: PBS	Batch ID: 9346	TestN	o: SW8270D	SW 3550C		Analysis Date:	1/30/2017	SeqNo: 267	7026	
Inalyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Va	I %RPD	RPDLimit	Qual
-Methylnaphthalene	ND	3.33								

O RSD is greater than RSDlimit

Specialty Analytical

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

WO#: 1701106

06-Feb-17

Client: Project:	Parametrix Salmonberry	-Botts Marsh / 27329	25007					ſ	SestCode:	PAHLL_S		
Sample ID: MB-934	6	SampType: MBLK	TestCoo	le: PAHLL_S	Units: µg/Kg		Prep Da	te: 1/30/20)17	RunNo: 199)25	
Client ID: PBS		Batch ID: 9346	TestN	lo: SW8270D	SW 3550C		Analysis Da	te: 1/30/20)17	SeqNo: 267	/026	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2-Methylnaphthalene	9	ND	3.33									
Acenaphthene		ND	3.33									
Acenaphthylene		ND	3.33									
Anthracene		ND	3.33									
Benz(a)anthracene		ND	3.33									
Benzo(a)pyrene		ND	3.33									
Benzo(b)fluoranthen	е	ND	3.33									
Benzo(g,h,i)perylene	9	ND	3.33									
Benzo(k)fluoranthen	е	ND	3.33									
Chrysene		ND	3.33									
Dibenz(a,h)anthrace	ne	ND	3.33									
Fluoranthene		ND	3.33									
Fluorene		ND	3.33									
Indeno(1,2,3-cd)pyre	ene	ND	3.33									
Naphthalene		ND	3.33									
Phenanthrene		ND	3.33									
Pyrene		ND	3.33									
Surr: 2-Fluorobiph	nenyl	4420		6667		66.2	42.6	128				
Surr: Nitrobenzen	e-d5	3650		6667		54.7	21.7	155				
Surr: p-Terphenyl-	-d14	5710		6667		85.6	44.9	155				

Specialty Analytical

Qualifiers:

В

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Н

ND Not Detected at the Reporting Limit

Page 61 of 69

0 RSD is greater than RSDlimit R RPD outside accepted recovery limits S Spike Recovery outside accepted reco

WO#: **1701106**

06-Feb-17

Sample ID: LCS-9346	SampType: LCS	TestCo	de: PAHLL_S	Units: µg/Kg		Prep Date:	1/30/2017		RunNo: 19 9	925	
Client ID: LCSS	Batch ID: 9346	Test	No: SW8270D	SW 3550C		Analysis Date:	1/30/2017		SeqNo: 267	7027	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
I-Methylnaphthalene	286	3.33	333.4	0	85.8	29.1	109				
2-Methylnaphthalene	209	3.33	333.4	0	62.6	29.1	109				
cenaphthene	273	3.33	333.4	0	81.8	39.6	107				
cenaphthylene	259	3.33	333.4	0	77.6	38.9	102				
Inthracene	267	3.33	333.4	0	80.0	43.4	119				
Benz(a)anthracene	255	3.33	333.4	0	76.6	48.4	121				
senzo(a)pyrene	261	3.33	333.4	0	78.2	37.7	137				
enzo(b)fluoranthene	212	3.33	333.4	0	63.6	58.6	117				
enzo(g,h,i)perylene	271	3.33	333.4	0	81.4	49.7	135				
enzo(k)fluoranthene	217	3.33	333.4	0	65.2	46.1	124				
hrysene	237	3.33	333.4	0	71.0	57.1	130				
ibenz(a,h)anthracene	304	3.33	333.4	0	91.2	44.2	124				
luoranthene	246	3.33	333.4	0	73.8	53.4	113				
luorene	279	3.33	333.4	0	83.6	37.1	114				
ndeno(1,2,3-cd)pyrene	265	3.33	333.4	0	79.4	47.9	121				
laphthalene	227	3.33	333.4	0	68.2	29.1	109				
henanthrene	247	3.33	333.4	0	74.2	48.4	115				
Pyrene	249	3.33	333.4	0	74.6	47.2	134				
Gample ID: 1701106-027BMS	SampType: MS	TestCo	de: PAHLL_S	Units: µg/Kg		Prep Date:	1/30/2017		RunNo: 19	925	
lient ID: BM-FD-011717-S1	Batch ID: 9346	Test	No: SW8270D	SW 3550C		Analysis Date:	1/30/2017		SeqNo: 267	7029	
nalyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
-Methylnaphthalene	333	167	333.3	0	100	27.7	108				

WO#: **1701106**

06-Feb-17

Sample ID: 1701106-027BMS	SampType: MS	TestCo	de: PAHLL_S	Units: µg/Kg		Prep Date:	1/30/20 ⁻	17	RunNo: 19	925	
Client ID: BM-FD-011717-S1	Batch ID: 9346	Test	No: SW8270D	SW 3550C		Analysis Date:	1/30/20 ⁻	17	SeqNo: 267	7029	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2-Methylnaphthalene	233	167	333.3	0	70.0	27.7	108				
Acenaphthene	367	167	333.3	0	110	33.7	111				
Acenaphthylene	400	167	333.3	200.0	60.0	32.3	125				
Anthracene	367	167	333.3	166.7	60.0	42.7	121				
Benz(a)anthracene	500	167	333.3	366.7	40.0	13.4	121				
Benzo(a)pyrene	600	167	333.3	533.3	20.0	14.6	110				
Benzo(b)fluoranthene	533	167	333.3	300.0	70.0	41.6	172				
Benzo(g,h,i)perylene	733	167	333.3	566.7	50.0	15	128				
Benzo(k)fluoranthene	433	167	333.3	166.7	80.0	47.9	140				
Chrysene	467	167	333.3	300.0	50.0	37.5	125				
Dibenz(a,h)anthracene	267	167	333.3	0	80.0	23.6	125				
Fluoranthene	900	167	333.3	666.7	70.0	56.8	141				
Fluorene	367	167	333.3	0	110	48.6	117				
ndeno(1,2,3-cd)pyrene	567	167	333.3	433.3	40.0	26.8	133				
Naphthalene	267	167	333.3	0	80.0	27.7	108				
Phenanthrene	400	167	333.3	266.7	40.0	20.2	139				
Pyrene	1530	167	333.3	1100	130	26.8	142				
	SampType: MSD	TestCo	de: PAHLL_S	Units: µg/Kg		Prep Date:	1/30/20	17	RunNo: 19 !	925	
Client ID: BM-FD-011717-S1	Batch ID: 9346	Test	No: SW8270D	SW 3550C		Analysis Date:	1/30/20 ⁻	17	SeqNo: 267	7030	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1-Methylnaphthalene	333	167	333.3	0	100	27.7	108	333.3	0	20	
2-Methylnaphthalene	233	167	333.3	0	70.0	27.7	108	233.3	0	20	

WO#: **1701106**

06-Feb-17

Client: Parametrix Project: Salmonberry	y -Botts Marsh / 2732925	007					Т	estCode: P	AHLL_S		
Sample ID: 1701106-027BMSD	SampType: MSD	TestCoo	le: PAHLL_S	Units: µg/Kg		Prep Date	e: 1/30/20	17	RunNo: 199	25	
Client ID: BM-FD-011717-S1	Batch ID: 9346	TestN	lo: SW8270D	SW 3550C		Analysis Date	e: 1/30/20 4	17	SeqNo: 267	030	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	333	167	333.3	0	100	33.7	111	366.7	9.52	20	
Acenaphthylene	433	167	333.3	200.0	70.0	32.3	125	400.0	8.00	20	
Anthracene	367	167	333.3	166.7	60.0	42.7	121	366.7	0	20	
Benz(a)anthracene	533	167	333.3	366.7	50.0	13.4	121	500.0	6.45	20	
Benzo(a)pyrene	667	167	333.3	533.3	40.0	14.6	110	600.0	10.5	20	
Benzo(b)fluoranthene	500	167	333.3	300.0	60.0	41.6	172	533.3	6.45	20	
Benzo(g,h,i)perylene	800	167	333.3	566.7	70.0	15	128	733.3	8.70	20	
Benzo(k)fluoranthene	500	167	333.3	166.7	100	47.9	140	433.3	14.3	20	
Chrysene	567	167	333.3	300.0	80.0	37.5	125	466.7	19.4	20	
Dibenz(a,h)anthracene	300	167	333.3	0	90.0	23.6	125	266.7	11.8	20	
Fluoranthene	1070	167	333.3	666.7	120	56.8	141	900.0	16.9	20	
Fluorene	300	167	333.3	0	90.0	48.6	117	366.7	20.0	20	R
Indeno(1,2,3-cd)pyrene	533	167	333.3	433.3	30.0	26.8	133	566.7	6.06	20	
Naphthalene	300	167	333.3	0	90.0	27.7	108	266.7	11.8	20	
Phenanthrene	500	167	333.3	266.7	70.0	20.2	139	400.0	22.2	20	R
Pyrene	1370	167	333.3	1100	80.0	26.8	142	1533	11.5	20	
Sample ID: CCV MSSWS-1410	SampType: CCV	TestCoo	de: PAHLL_S	Units: µg/Kg		Prep Date	e:		RunNo: 199	25	
Client ID: CCV	Batch ID: 9346	TestN	lo: SW8270D	SW 3550C		Analysis Date	e: 2/1/201 7	7	SeqNo: 267	136	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1-Methylnaphthalene	133	3.33	133.3	0	99.5	80	120				
2-Methylnaphthalene	110	3.33	133.3	0	82.5	80	120				
Acenaphthene	129	3.33	133.3	0	97.0	80	120				
Qualifiers: B Analyte detect O RSD is greater	ed in the associated Method Bla than RSDlimit	ank	H Holdin R RPD o	g times for preparatior utside accepted recove	ı or analysi ry limits	s exceeded	ND N S S	lot Detected at the pike Recovery ou	e Reporting Lim tside accepted re	it Pag	e 64 of 69

WO#: **1701106**

06-Feb-17

Client: F Project: S	Parametrix Salmonberry	-Botts Marsh / 27329	925007					Т	estCode: P	AHLL_S			
Sample ID: CCV MS	SWS-1410	SampType: CCV	TestCoo	le: PAHLL_S	Units: µg/Kg		Prep Dat	e:		RunNo: 199	25		
Client ID: CCV		Batch ID: 9346	TestN	lo: SW8270D	SW 3550C		Analysis Dat	e: 2/1/201	7	SeqNo: 267	136		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Acenaphthylene		126	3.33	133.3	0	94.5	80	120					
Anthracene		116	3.33	133.3	0	87.0	80	120					
Benz(a)anthracene		115	3.33	133.3	0	86.5	80	120					
Benzo(a)pyrene		113	3.33	133.3	0	85.0	80	120					
Benzo(b)fluoranthene	e	135	3.33	133.3	0	102	80	120					
Benzo(g,h,i)perylene		108	3.33	133.3	0	81.0	80	120					
Benzo(k)fluoranthene	9	134	3.33	133.3	0	101	80	120					
Chrysene		109	3.33	133.3	0	82.0	80	120					
Dibenz(a,h)anthracen	ne	127	3.33	133.3	0	95.5	80	120					
Fluoranthene		110	3.33	133.3	0	82.5	80	120					
Fluorene		125	3.33	133.3	0	94.0	80	120					
Indeno(1,2,3-cd)pyrer	ne	109	3.33	133.3	0	81.5	80	120					
Naphthalene		113	3.33	133.3	0	85.0	80	120					
Phenanthrene		112	3.33	133.3	0	84.0	80	120					
Pyrene		119	3.33	133.3	0	89.0	80	120					

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

O RSD is greater than RSDlimit

Specialty Analytical

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

Page 65 of 69

WO#: 1701106

06-Feb-17

Sample ID: CCV MSSWS-1410	SampType: CCV	TestCoo	le: PAHLL_W	Units: µg/L		Prep Date:		RunNo: 19862	
Client ID: CCV	Batch ID: 9285	TestN	lo: SW8270D	SW 3510C		Analysis Date:	1/24/2017	SeqNo: 265999	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref V	al %RPD RPDLimit	Qual
I-Methylnaphthalene	2.08	0.0500	2.000	0	104	80	120		
2-Methylnaphthalene	1.75	0.0500	2.000	0	87.5	80	120		
Acenaphthene	1.92	0.0500	2.000	0	96.0	80	120		
Acenaphthylene	1.91	0.0500	2.000	0	95.5	80	120		
Anthracene	1.76	0.0500	2.000	0	88.0	80	120		
Benz(a)anthracene	1.71	0.0500	2.000	0	85.5	80	120		
Benzo(a)pyrene	1.63	0.0500	2.000	0	81.5	80	120		
Benzo(b)fluoranthene	1.76	0.0500	2.000	0	88.0	80	120		
enzo(g,h,i)perylene	1.67	0.0500	2.000	0	83.5	80	120		
enzo(k)fluoranthene	1.72	0.0500	2.000	0	86.0	80	120		
Chrysene	1.69	0.0500	2.000	0	84.5	80	120		
Dibenz(a,h)anthracene	1.90	0.0500	2.000	0	95.0	80	120		
luoranthene	1.65	0.0500	2.000	0	82.5	80	120		
luorene	1.93	0.0500	2.000	0	96.5	80	120		
ndeno(1,2,3-cd)pyrene	1.65	0.0500	2.000	0	82.5	80	120		
laphthalene	1.71	0.0500	2.000	0	85.5	80	120		
Phenanthrene	1.69	0.0500	2.000	0	84.5	80	120		
Pyrene	2.22	0.0500	2.000	0	111	80	120		
Sample ID: MB-9285	SampType: MBLK	TestCoc	le: PAHLL_W	Units: µg/L		Prep Date:	1/19/2017	RunNo: 19862	
lient ID: PBW	Batch ID: 9285	TestN	lo: SW8270D	SW 3510C		Analysis Date:	1/24/2017	SeqNo: 266000	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref V	al %RPD RPDLimit	Qua
-Methylnaphthalene	ND	0.0500							

O RSD is greater than RSDlimit

Specialty Analytical

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

WO#: **1701106**

06-Feb-17

Client:	Parametrix	D	25007					7				
Project:	Salmonberry	-Botts Marsh / 2/329	25007					1	estCode:	PAHLL_W		
Sample ID: MB-928	5	SampType: MBLK	TestCo	de: PAHLL_W	Units: µg/L		Prep Da	te: 1/19/20	17	RunNo: 198	362	
Client ID: PBW		Batch ID: 9285	TestN	lo: SW8270D	SW 3510C		Analysis Da	te: 1/24/20	17	SeqNo: 266	3000	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2-Methylnaphthalene	е	ND	0.0500									
Acenaphthene		ND	0.0500									
Acenaphthylene		ND	0.0500									
Anthracene		ND	0.0500									
Benz(a)anthracene		ND	0.0500									
Benzo(a)pyrene		ND	0.0500									
Benzo(b)fluoranthen	ne	ND	0.0500									
Benzo(g,h,i)perylene	e	ND	0.0500									
Benzo(k)fluoranthen	e	ND	0.0500									
Chrysene		ND	0.0500									
Dibenz(a,h)anthrace	ene	ND	0.0500									
Fluoranthene		ND	0.0500									
Fluorene		ND	0.0500									
Indeno(1,2,3-cd)pyre	ene	ND	0.0500									
Naphthalene		ND	0.0500									
Phenanthrene		ND	0.0500									
Pyrene		ND	0.0500									
Surr: 2-Fluorobiph	nenyl	68.9		100.0		68.9	18.6	106				
Surr: Nitrobenzen	ie-d5	55.3		100.0		55.3	17	130				
Surr: Terphenyl-d	14	89.7		100.0		89.7	39.6	131				

Specialty Analytical

Qualifiers: B Analyte det

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

Page 67 of 69

WO#: 1701106

06-Feb-17

Sample ID: LCS-9285	SampType: LCS	TestCo	de: PAHLL_W	Units: µg/L		Prep Date:	1/19/201	17	RunNo: 198	862	
Client ID: LCSW	Batch ID: 9285	Test	No: SW8270D	SW 3510C		Analysis Date:	1/24/201	17	SeqNo: 266	6001	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1-Methylnaphthalene	4.40	0.0500	5.000	0	88.0	39.6	131				
2-Methylnaphthalene	3.44	0.0500	5.000	0	68.8	25.6	106				
Acenaphthene	4.37	0.0500	5.000	0	87.4	35.1	131				
Acenaphthylene	4.16	0.0500	5.000	0	83.2	29	126				
Anthracene	3.96	0.0500	5.000	0	79.2	42	130				
Benz(a)anthracene	3.97	0.0500	5.000	0	79.4	34.2	129.1				
Benzo(a)pyrene	4.18	0.0500	5.000	0	83.6	23.4	127.4				
Benzo(b)fluoranthene	4.01	0.0500	5.000	0	80.2	36.6	125.8				
Benzo(g,h,i)perylene	3.63	0.0500	5.000	0	72.6	20.8	123				
Benzo(k)fluoranthene	4.40	0.0500	5.000	0	88.0	39.7	129.5				
Chrysene	3.55	0.0500	5.000	0	71.0	39.1	120				
Dibenz(a,h)anthracene	4.52	0.0500	5.000	0	90.4	5.05	123.4				
Fluoranthene	3.69	0.0500	5.000	0	73.8	42.4	119				
Fluorene	4.31	0.0500	5.000	0	86.2	37.4	129				
ndeno(1,2,3-cd)pyrene	3.99	0.0500	5.000	0	79.8	10.5	125.9				
Naphthalene	3.39	0.0500	5.000	0	67.8	25.6	128.4				
Phenanthrene	3.79	0.0500	5.000	0	75.8	38.1	128.4				
Pyrene	4.05	0.0500	5.000	0	81.0	41.3	126				
Sample ID: LCSD-9285	SampType: LCSD	TestCo	de: PAHLL_W	Units: µg/L		Prep Date:	1/19/201	17	RunNo: 19	862	
Client ID: LCSS02	Batch ID: 9285	Test	No: SW8270D	SW 3510C		Analysis Date:	1/24/201	17	SeqNo: 266	6002	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1-Methylnaphthalene	4.23	0.0500	5.000	0	84.6	39.6	131	4.400	3.94	20	

Specialty Analytical

тy

WO#: **1701106**

06-Feb-17

Client: Paramet Project: Salmont	rix perry -Botts Marsh / 27329	25007					Т	estCode: P	AHLL_W		
Sample ID: LCSD-9285	SampType: LCSD	TestCo	de: PAHLL_W	Units: µg/L		Prep Dat	te: 1/19/20	17	RunNo: 198	62	
Client ID: LCSS02	Batch ID: 9285	Test	No: SW8270D	SW 3510C		Analysis Dat	te: 1/24/20	17	SeqNo: 266	002	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2-Methylnaphthalene	3.31	0.0500	5.000	0	66.2	25.6	106	3.440	3.85	20	
Acenaphthene	4.19	0.0500	5.000	0	83.8	35.1	131	4.370	4.21	20	
Acenaphthylene	4.07	0.0500	5.000	0	81.4	29	126	4.160	2.19	20	
Anthracene	4.00	0.0500	5.000	0	80.0	42	130	3.960	1.01	20	
Benz(a)anthracene	4.04	0.0500	5.000	0	80.8	34.2	129.1	3.970	1.75	20	
Benzo(a)pyrene	4.23	0.0500	5.000	0	84.6	23.4	127.4	4.180	1.19	20	
Benzo(b)fluoranthene	4.41	0.0500	5.000	0	88.2	36.6	125.8	4.010	9.50	20	
Benzo(g,h,i)perylene	3.90	0.0500	5.000	0	78.0	20.8	123	3.630	7.17	20	
Benzo(k)fluoranthene	3.95	0.0500	5.000	0	79.0	39.7	129.5	4.400	10.8	20	
Chrysene	3.55	0.0500	5.000	0	71.0	39.1	120	3.550	0	20	
Dibenz(a,h)anthracene	4.83	0.0500	5.000	0	96.6	5.05	123.4	4.520	6.63	20	
Fluoranthene	3.74	0.0500	5.000	0	74.8	42.4	119	3.690	1.35	20	
Fluorene	4.26	0.0500	5.000	0	85.2	37.4	129	4.310	1.17	20	
Indeno(1,2,3-cd)pyrene	4.20	0.0500	5.000	0	84.0	10.5	125.9	3.990	5.13	20	
Naphthalene	3.39	0.0500	5.000	0	67.8	25.6	128.4	3.390	0	20	
Phenanthrene	3.89	0.0500	5.000	0	77.8	38.1	128.4	3.790	2.60	20	
Pyrene	4.16	0.0500	5.000	0	83.2	41.3	126	4.050	2.68	20	

Specialty Analytical

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 69 of 69

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco
KEY TO FLAGS

- A This sample contains a Gasoline Range Organic not identified as a specific hydrocarbon product. The result was quantified against gasoline calibration standards
- A1 This sample contains a Diesel Range Organic not identified as a specific hydrocarbon product. The result was quantified against diesel calibration standards.
- A2 This sample contains a Lube Oil Range Organic not identified as a specific hydrocarbon product. The result was quantified against a lube oil calibration standard.
- A3 The result was determined to be Non-Detect based on hydrocarbon pattern recognition. The product was carry-over from another hydrocarbon type.
- A4 The product appears to be aged or degraded diesel.
- B The blank exhibited a positive result great than the reporting limit for this compound.
- CN See Case Narrative.
- D Result is based from a dilution.
- E Result exceeds the calibration range for this compound. The result should be considered as estimate.
- F The positive result for this hydrocarbon is due to single component contamination. The product does not match any hydrocarbon in the fuels library.
- G Result may be biased high due to biogenic interferences. Clean up is recommended.
- H Sample was analyzed outside recommended holding time.
- HT At clients request, samples was analyzed outside of recommended holding time.
- J The result for this analyte is between the MDL and the PQL and should be considered as estimated concentration.
- K Diesel result is biased high due to amount of Oil contained in the sample.
- L Diesel result is biased high due to amount of Gasoline contained in the sample.
- M Oil result is biased high due to amount of Diesel contained in the sample.
- MC Sample concentration is greater than 4x the spiked value, the spiked value is considered insignificant.
- MI Result is outside control limits due to matrix interference.
- MSA Value determined by Method of Standard Addition.
- O Laboratory Control Standard (LCS) exceeded laboratory control limits, but meets CCV criteria. Data meets EPA requirements.
- Q Detection levels elevated due to sample matrix.
- R RPD control limits were exceeded.
- RF Duplicate failed due to result being at or near the method-reporting limit.
- RP Matrix spike values exceed established QC limits; post digestion spike is in control.
- S Recovery is outside control limits.
- SC Closing CCV or LCS exceeded high recovery control limits, but associated samples are non-detect. Data meets EPA requirements.
- * The result for this parameter was greater that the maximum contaminant level of the TCLP regulatory limit.

	``	0	HAIN	E O	Õ			EC			Page_	s S	
X		Specialty Analytical 1711 SE Capps Road				Contac Compa	t Perso any	n/Proje	ct Manager	Rick whose	ic diff	w ⁻¹	
		lackamas, OR 97015 hone: 503-607-1331				Addre	s	R R	NE WUU	MANAN SUTTE	600)		
	1 /	ax: 503-607-1336				Phone	Ø	2-2	3-2400	Fax			
Collected	BY:	12-7				Projec	1 No 2	13292	Pro	ject Name Salma	Beery -R	atts Mars	<u> </u>
Signature.						Projec	t Site Lo	cation	OR X WA	Other	-		
Printed	Auc	in Kamey				Invoice	e To	*	x Lyonary	0 d	. No.		I
Signature			L , <u>.</u> .	┝┻			Ā	alyses		For Labo	oratory Use		
Printed			·	·		()	(9			Lab Job No. 17C	90110		
Turn Around] Дте			siers		47400	275	512		Shipped Via	-142V		
Νų (Normal 5-7	Business Days		iistrio	n i	74WZ	n)	lovi					
	LING			, t Ci		9	8	B		Temperature On Recei		0	
Rush Analy	ses Must Be	specry Scheduled With The Lab in Advance		0 '0N	HALM HALM	501	~ JUJ	5K4-		Specialty Analytical Co Specialty Analytical Tri	ntainers? Y / p Blanks? Y	zz	
Date	Time			 	'& N	S	C	к. Т					
11911	845	BM-B-20-1.0				R	K			Comments		Lab I.D.	
	0850	BM-B-20-8.0		16 10	\mathbf{k}	2	<u> </u>			Tower 12	4 =		
	0955	BM-B-A- 110		N N				×		2			
	100	0 BM-3-19-7-0		2 2 2	\mathbf{k}			(4 191			
	1015	BM-B-17-1.0		3 X						1224			
	0201	BM-B-17-4,0		3						Gut			
	(030	BM- B-18-10		3 X									
	0401	BM-B-18 -4.0		3						HOLD			
	1055	BM-B-16-1.0		3 2			X			×			
	1100	BM-B-16-6.0		3 X				Ø		A Lar			
	1110	BM-B-15-1,0		2 2									
>	1115	BM-B-15-5.5	→ >	2						GLIAH			
Relinquisher	E.	Time Time	Received B	÷					Relinquished By:		Date	Time	
Company:	Faren	11/11/1041	Company:						Company:				
Uniess Rect Samples held	aimed, Samp beyond 60 da	oles Wili Be Disposed of 60 Days After Receipt. yys subject to storage fee(s)							Received For Lab B		Date	Time	
									V		14)/ 14/	0.49	

			CHAIN	07		S S			00				Page_	Z of <u>N</u>
X		Specialty Analytica				ŏŬ	ontact P.	erson/F	roject ₽₽	Manag	er Ars X	ick watched	74	
N/		lackamas, OR 97015 'hone: 503-607-1331				Ā	ddress		Poer	AN N	CUMAC	or att	2007	
	i.	ax: >05-60/-1556					hone	503	- 23	3.21	ŝ	Fax		
Collected	BV:	NR				<u>ם</u> ו	roject N	17 °	292	5007	Proj	ect Name Sulman	erry - Br	the Marsh
Printed		dem Romey				4 E	roject Sil voice To	te Loca		<u>x</u> X X	M X	Other P.O.	No.	
Signature_		/						Anah	1606			Eor l abor	ratory Heo	
Printed.			1				(+						201	
Turn Around	1 Time			Jêrs			(>~ 740	100	ን			Shipped Via	zat	
13.	fNomai 5-7	Business Days		nietro	×Q		24112	<u></u>	<u>مار</u>					1
	l Rush				<u> </u>		ノ 打		<u>N 6</u>			Temperature On Receit		υ
Rush Analy	yses Must Br	Specify e Scheduled With The Lab in Advance		o .oN	Hellm	541-6	5701	570,	3-120			Specialty Analytical Cor Specialty Analytical Trip	ıtainers∱ Y ö.Blanks? Y	Z Z
Date	Time	Sample I.D.	Matrix	1	N	त	5	$\frac{1}{2}$	В			Comments		
11417	1210	BM-B-12-1.0	501L	8	X							& Added X7/7.	22	
	1215	RM-B-12-510	<u>۲</u>	\sim	\boxtimes	X			\bigotimes			Ho.J		
	1315	BM-B-14-1.0		\sim	X		\bigtriangledown							
	1320	BM-B-14-55		\sim	8							Had		
	1340	BM-B-11-1.0		<u>m</u>	X				${\color{black}{\times}}$					
	1345	BM-B-11-6.5		m								Hard		
	1405	BM-B-13-1.0		3	X							-		
	0171	BM-B-13-7,0		m	8							Hort		
	1430	BM-B-10-2.0		<u>m</u>	\times				X					
	1440	BM-B-10-5, 5		ŝ	\boxtimes							Herb		
	144S	BM-B-9-0.5		\sim	X									
≽	1450	1, BM-B-9-4.0	7	M								C-PF1		
Relinquishe	id By:	UTZ Date Tim	e Receive	id By:						Relinqui	shed By:		Date	Time
Company:	Para	retrix / 11/19/17 101	Compar	ž					-	Compan	y:			
Unless Rec Samples hel	<mark>tlaimed, Sam</mark> j d beyond 60 d	bles Will Be Disposed of 60 Days After Rec. lays subject to storage fee(s)	ipt.							Receive	d For Lab B		Date	Time
									-				FIALL	24.7

	C	HAIN		SUS				æ		Page_	2.5	
Speci	ialty Analytical			30	ontact Pe ompanv	erson/Pro	oject Mar	ager P	ICL U HOSMOR	TH		
Dhone: 502	s, OR 97015 3-607-1331			×	ddress	20	ر م	NR I	MULTINAMAH, S	VIAE LO	90	
Fax: 503-6	507-1336			1 11	hone	203-	23-1		R 97214 Fax		****	
Collected By:	ſ			. a	roject N	. 273	4250	07 Pro	ject Name 2 1km	(seent	- Bets We	-fe
Signature A and C				<u>а</u> <u>-</u>	roject Sit	e Locatio	N OR	× M	Other P.O.	No.		
	<u> </u>	L										
Signature						Analys	es		For Labo	ratory Use		
			s.		12	<u> </u>	3		Shipped Via	icat		
Tum Around Time			iənis		7241		চ্দ		Air Bill No.	a a a a a a a a a a a a a a a a a a a		
🕅 Normal 5-7 Business 🗆 Rush	Days		stro Conti	20	n) May		<u>w</u>		Temperature On Recei		0	
Speci	zity		to . Li	5	5		g.		Specialty Analytical Co	ntainers? Y	z	
Rush Analyses Must Be Schedult	ed With The Lab In Advance		oN 	144	2010		42		Specialty Analytical Tri	p Blanks? Y	z	
Date Time	Sample I.D.	Matrix	<u>N</u>	4	$\frac{\alpha}{S}$		R		Comments		Lab I.D.	
111117 1500 BM	-R-8-210	Saic	S X						BADDed Yithis	4		
1 1510 BM	1-8-8-5.5	-	3						Hous			
V. COCO BM	(-FD-011713-51		3 X	\boxtimes		Ì						
1/18/17 0900 BM	1-8-7-1.0		3 X		\bigotimes	X			-			
1 OPIO BN	1-8-7-5.5		$\overline{\mathbb{S}}$)	<u>لاک</u> ($\overline{\mathbf{X}}$		HOLD			
- 0930 BM	1-B-4-1.0		N N									
0440 BM	1-8-4-6.0		3						How			
CONS BM	1-8-3-1.0	_	X M		X							
0950 BM	1-8-3-5.5		2						Anot			
0155 BM	1-3-1-1.0		N M				×					
1000 BM	1-3-1-50		M M	X	_				Croft			
V 1020 , BM	1-8-2-1.0	≽	M			_						
Relinquished By	Date Time	Received F	3y:				Relir	nquished By:		Date	Time	
Company: Parametre	1/4/17/1/2 104S	Company:					E O O	:bany:				
Unless Reclaimed, Samples Will B. Samples held beyond 60 days subject	le Disposed of 60 Days After Receipt. ct to storage fee(s)						Rea	eived For Lab.	X	Date	Time	
									····· · · · · · · · · · · · · · · · ·			

			HAIN	U O	CUS		V RE	CO B			Page	- - - -
Collected		Specialty Analytical 11711 SE Capps Road Clackamas, OR 97015 Phone: 503-607-1331 Fax: 503-607-1336			004	ontact P company ddress_ hone Project N	erson/Pre- 170 10. 273 10. 273 10. 273	oject M. B. D. D. Control M.	anager HEANNET HEANN HEANN HEANNET HEANNET HEA	RICK WADS ILINOWAND, SUV UNDOWAND, SUV OR 97214 Project Name Schwander	woreath enry - Bu	12 Menust
Printed	A A	dam Romey			-	nvoice T(X	P.O.	No.	
Signature_				s		(2 m	Analys	es		For Labor Lab Job No. 170 Spinned Via CI	i Chit	
Tum Aroun Z	I Time Normal 5-7 Rush	7 Business Days		Sontainer	Xa	- Hrat	ອາອາກ	Slater		Air Bill No.		
Rush Anal)	ses Must B	Specify 3e Scheduled With The Łab in Advance	<u></u>) to .ol	HAIM.	<u>\0000000</u>	570/	W g 421.		Specialty Analytical Cor Specialty Analytical Trip	ntainers? Y/	. z z
Date 11/5/2	Time	2M - D - 1 - 7 €	Matrix	2	2	S		18		Comments		Lab I.D.
	1100	BM-B-C-1, 0	2 -	100		-		R		X Ader K7	17 0	
	1110	BM-B-6-6.0		3				<u>}</u>		GINH		
	1115	BM-B-5-1.0		<i>м</i> (X	Ô	X				
\rightarrow	2218	BM-B-5-4.0 BM-FD-01817-52	\rightarrow	2 N N N			_			Anot		
								┝╌┝				
				_		+						
				$\left - \right $		$\left \right $						
Relinquishe Company:	By: A	metric 1/19/17 1045	Received Company:	з <mark>к</mark> е				Rel Cor	inquished By: mpany:		Date	Time
Uniess Rec Samples held	laimed, Sam I beyond 60 (nples Will Be Disposed of 60 Days After Receipt. days subject to storage fee(s)						Ř	ceived For Lat	o By	Date)- [4, [1]	1ime
			:									

				õ	HAIN	L	CUS			С Ш	0KD 0			Page	B
	אַ גע:	pecialty Ar	nalyti	cal				Contac	d Perso	in/Proj	ect Manager_	X	CLL WADS		
		ckamas, OR 97015						Addre	ss	12	NEN C	X	ILTHORNAM , SUG	10	<u> </u>
	Pho	one: 503-607-1331								Pan	GNAMT	<u>G</u>	M22-L6		
_	Fax	: 503-60/-1336						Phon	יט	203-	233-240	õ	Fax		
Collected By		(1+)						Proje	ct No	2432	425007	Proj	ect Name		
Signature	X	1/1022						Projec	ct Site L	ocation	R	WA	Other		
Printed	4	dam Ravey						Invoic	ë To		X		P.O. N	0.	
Signature									A	nalvse			For Labora	itory Use	
Printed								1		(1-14) (1-24)(24)	(177) al		Lab Job No. 170	100	
						stei		r07		~ ドノ 1) 羽	8012		Shipped Via	Carl	
I UN Around I	ime ormai 5-7 Bu	usiness Days				nietr	<u>م</u>	Arc		1 - 1 -) (1)~			ſ.,	
	hsh		ı			юЭ		খ্য		<u>v G</u>			Temperature On Receipt	24	
		Specify				lo .	ha	57 E	8	• •	A 0		Specialty Analytical Cont	tainers? Y /	Z
Rush Analysı	es Must Be (Scheduled With The L	ab In Advan	e		PN	<u>1~1</u>	ONS	$\frac{1}{100}$	20>	415		Specialty Analytical Trip	Blanks? Y/	z
Date	Time	Sample) I.D.		Matrix		1	3	¥		4		Comments		Lab I.D.
117 17	00000	BM-FD-0117	マート		NATURA V	0	<u>Х</u>	$\overline{}$	X	\overline{A}			X Adden Kita	L.	
	1145	BM-9-15-	7			00									
	0915	BM- B-20-	Ş			00	시 X		X	\mathbf{X}					
2	1235	BM-B -12-	Ş			6 0	\times		X	X					
t:/8//1	1150	BM-B-5-1	3			80	X	$\overline{}$	X	X	XX		*N THEN THEN	NON LON	> cro-col
-	1240	3M-8-7-1	7			σ			X	<u>}</u>			ATT NO3 CM17 4	N preserved	Velvine
ڊ ڊ	1330	8M-8-1-1	7		\rightarrow	ல	A X	-	Ź	$\overline{\mathbf{X}}$					
1	1	TEP BU	ANK		WATEK	Ч			X	_					
							+			+				DIDITAL 1970	and the second
							-	_		+-					
								-							
Relinquished	By:		Date	Time	Received	By:				5 - - -	Relinquish	led By:		Date	Time
Company:					Company						Company				
Uniess Recla Samples heid t	imed, Sampl beyond 60 da	les Will Be Disposed of iys subject to storage fee(60 Days Afte (s)	r Receipt.							Received	For Lab E	·····	Date	Time ۱۵ ۵ (۲